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ON HONG AND SZYMA NSKI'S DESCRIPTION OF THE
PRIMITIVE-IDEAL SPACE OF A GRAPH ALGEBRA

TOKE MEIER CARLSEN AND AIDAN SIMS

ABSTRACT. In 2004, Hong and Szymanski produced a complete desmmigt the
primitive-ideal space of the*-algebra of a directed graph. This article details a slightl
different approach, in the simpler context of row-finitegna with no sources, obtain-
ing an explicit description of the ideal lattice of a grapbedira.

1. INTRODUCTION

The purpose of this paper is to present a new exposition, ionzewhat simpler
setting, of Hong and Szymanski’'s description of the priveitideal space of a grafi*-
algebra. Their analysis|[8] relates the primitive ideal€tfE) to the maximal tail§ of
E—subsets of the vertex set satisfying three elementary swatdrial conditions (see
pageB). In previous work with Bates and Raeburn, Hong andn8agki had already
studied the primitive ideals @*(E) that are invariant for its gauge action. Specifically,
[2, Theorem 4.7] shows that the gauge-invariant primitdesis ofC*(E) come in two
flavours: those indexed by maximal tails in which every cy@s an entrance; and those
indexed bybreaking verticeswhich receive infinitely many edgeslkt but only finitely
many in the maximal tail that they generate. Hong and Szwgkiaompleted this list by
showing in [8, Theorem 2.10] that the non-gauge-invariampive ideals are indexed
by pairs consisting of a maximal tail containing a cycle withentrance, and a complex
number of modulus 1.

The bulk of the work in({[8] then went into the description oéthacobson, or hull-
kernel, topology on Prir@*(E) in terms of the indexing set described in the preceding
paragraph. Theorem 3.4 6f [8] describes the closure of eeswb&rimC*(E) in terms
of the combinatorial data of maximal tails and breakingiced, and the usual topol-
ogy on the circlel. (Gabe|[7] subsequently pointed out and corrected a mista]&:
Theorem 3.4], but there is no discrepancy for row-finite sawith no sources.) The
technical details and notation involved even in the statgrokthis theorem are formi-
dable, with the upshot that applying Hong and Szymanséssiit requires discussion of
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a fair amount of background and notation. This is due to saxtenéto the complica-
tions introduced by infinite receivers in the graph (to ség ttomparel[8, Theorem 3.4]
with the corresponding statement [8, Corollary 3.5] for fiimite graphs). But it is also
caused in part by the numerous cases involved in descrilongline different flavours
of primitive ideals described in the preceding paragrajditedgo one another topologi-
cally.

Here we restrict attention to the class of row-finite grapith wo sources originally
considered in[11, 10, 3]; it is a well-known principal thasults tend to be cleaner in
this context. Th&*-algebra of an arbitrary graghis a full corner of theC*-algebra of
a row-finite graphEys with no sources, called a Drinen—Tomforde desingulansdi
[6], so in principal our results combined with the Rieffeh@spondence can be used to
describe the primitive-ideal space and the ideal latticanyf graphC*-algebra. But in
practice there is serious book-keeping hidden in this inoas-sounding statement.

We take a somewhat different approach than Hong and Szymnafis start, as they
do, by identifying all the primitive ideals (Theorém B.7)retuigh we take a slightly dif-
ferent route to the result. Our next step is to state prgcisben a given primitive ideal
in our list belongs to the closure of some other set of primitdeals (Theorer 4.1).
We could then describe the closure operation along the dhekng and Szymanski’s
result, but here our approach diverges from theirs. We desarlist of (not necessarily
primitive) idealsJy y of C*(E) indexed byideal pairs consisting of a saturated heredi-
tary setH and an assignmeh of a proper open subset of the circle to every cycle with
no entrance in the complementidf We describe eacBy y concretely by providing a
family of generators. We prove that the m@p,U ) — Jy u is a bijection between ideal
pairs and ideals, and describe the inverse assignmenti@né&al). Finally, in Theo-
rem[6.1, we describe the containment relation and the ed@on and join operations
on primitive ideals in terms of a partial ordering and a meektajoin operation on ideal
pairs.

One can recover the closure of a subset PrimC*(E), and so Hong and Szymahn-
ski’s result, either by using the characterisation of pwintX from Theoreni 4]1, or by
computingN X using Theorem 6]1 and listing all the primitive ideals thamtain this
intersection. To aid in doing the latter, we single out theaidpairs that correspond to
primitive ideals (Remark 513), and identify when a givdy is contained in a given
primitive ideal (LemmaZ5]2).

We hope that this presentation of the ideal structur€d@E) whenE is row-finite
with no sources will provide a useful and gentle introdutctio Hong and Szymanski’s
beautiful result for arbitrary graphs; and in particulaattit will be helpful to readers
familiar with the usual listing of gauge-invariant idealking saturated hereditary sets.

Acknowledgement. The exposition of this paper has benefitted greatly from the
suggestions of a very helpful referee. Thanks, whoever yeu a

1.1. Background. We assume familiarity with Raeburn’s monograph![13] ancetak
most of our notation and conventions from there. We have naadeffort not to as-
sume any further background.
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We deal with row-finite directed grapliswith no sources; these consist of countable
setsE?, E1 and maps,s: E* — EY such that is surjective and finite-to-one. A Cuntz—
Krieger family consists of projectiongpy : v € E®} and partial isometriegse : e € E*}
such thatssse = Pse) and py = Y(g—vSeSe- We will use the convention where, for
example, foiv € E° the notatiorvE! means{e € EX: r(e) = v}. A path of lengttn > 0
is a stringu = e ...e, of edges whera(g) =r(g.1), andE" denotes the collection
of paths of lengtm. We write E* for the collection of all finite paths (including the
vertices, regarded as paths of length 0), andvB&t= {u € E* : r(u) = v}, E*w =
{u € E*: s(u) = w} andvE*w = VE* N E*w whenv,w € E°.

2. INFINITE PATHS AND MAXIMAL TAILS

Our first order of business is to relate maximal tails in a grapth the shift-tail
equivalence classes of infinite paths (see also [9]).
Recall that anaximal tailin EC is a sefl C E° such that:

(T1) if ec E' ands(e) € T, thenr(e) € T;
(T2) if ve T then there is at least orec VE! such thass(e) € T; and
(T3) if vwe T then there exisft € VE* andv € wE* such thas(u) =s(v) € T.

If T is a maximal tail, there is a subgrapfi” of E with verticesT and edge&!T :=
{ecEl:s(e)cT}.

An infinite pathin E is a stringx = ejeve3- - - of edges such thae) =r(g,1) for
all'i. We letr(x) :=r(ey). Two infinite pathsx andy are shift-tail equivalent if there
existm,n € N such that

Xiim=VYi+n forallieN.

This shift-tail equivalence is (as the name suggests) aivaguce relation, and we
write [x] for the equivalence class of an infinite path

Shift-tail equivalence classés of infinite paths correspond naturally to irreducible
representations @*(E) (see LemmA3]2). However, the corresponding primitivel&lea
depend not orx], but only on the maximal tail consisting of vertices that tre range
of an infinite path in[x]. The next lemma describes the relationship between sift-t
equivalence classes of infinite paths and maximal tails.

Lemma 2.1. Let E be a row-finite graph with no sources. A se€TE® is a maximal
tail if and only if there exists ¥ E® such that T= [x|%:= {r(y) : y € []}.

Proof. First suppose thaf is a maximal tail. ListT = (v1,Vvp,...). SetA; = 1y =
v1 € E*, and then inductively, having chosen ; € vi_oE* andAj_1 € vi_1E* with
S(Ai—1) =s(u), use (T3) to findy; € vi_1E* andA; € viE* such thas(L;) = s(A) € T.
We obtain an infinite path = o3 - - -. Since eaclipi 11412 - belongs tdx], we
haveT C [x]°. For the reverse containment, observe thatdf [x]°, then there exists
y € [X] such thatv =r(y1). By definition of [x] there arem,i such thats(ym) = s(1).
Sincey; € T, mapplications of (T1) show thai(y;) € T. O
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We divide the maximal tails ifE into two sorts. Those which have a cycle with
no entrance, and those which don’t. The main point is thapoasted out in[[8], if T
contains a cycle without an entrance, then it contains justad them, and is completely
determined by this cycle.

A cyclein a graphE is a pathu = 1 ... 4y € E* such that (u1) = s(un) ands(p;) #
s(uj) wheneveri # j. Each cycleu determines an infinite path® := pupu--- and
hence a maximal tail, := [u*]°; it is straightforward to check that

Tu={r(A):A €E"r(n)}.

Given a cycleu € E* and a subseh of E that containgr (1) i < |u|}, we say that
u is a cycle with no entrance inik {ec r()E* : s(e) € A} = {1} for each 1< i < |p|.

Lemma 2.2. Let E be a row-finite graph with no sources. Suppose that B is a
maximal tail. Then either

a) there is a cyclgu with no entrance in T such that ¥ T, and thisu is unique up
to cyclic permutation of its edges; or
b) there is no cyclet with no entrancein T.

Proof. Suppose that there is a cyglewith no entrance iT. Lemma 2.1l implies that
T = [x]° for some infinite pattx. So there existg € [x] such that (y) =r(u), and since
shift-tail equivalence is an equivalence relation, we thaveT = [y]°. Sinceu has no
entrance inTl, the only element oE® lying entirely within T and with range (u) is
p®. Soy = p®, andT = [u®]°=T,,.

If v is another cycle with no entrance h= T, thenr(v)E*r(u) # 0, sayA €
r(v)E*r(u). Sincev has no entrance iif, we haveA u = vy°--- vy for somek. In
particularvlf_wm---vlzo = Y, and we deduce that= i - -ty o - - Hi—1, Wherei =

K+1 (mod|ul). O

We call a maximal taill satisfying (a) in Lemma 2|2 @yclic maximal tailand write
Per(T) := |u|. We call a maximal tail satisfying (b) in Lemm&2]2 aperiodic maxi-
mal tail, and define Péil ) := 0.

3. THE IRREDUCIBLE REPRESENTATIONS

In this section, we show that every primitive ideal@f(E) naturally determines a
corresponding maximal tail, and then construct a familyredducible representations
of C*(E) associated to each maximal tailf

The following lemma constructs a maximal tail from each ptive ideal ofC*(E). It
was proved for arbitrary graphs in [2, Lemma 4.1] using thati@nship between ideals
and saturated hereditary sets established there and imatiye ideals of separablé*-
algebras are prime. Here we present instead the directsespedion-theoretic argument
of [4, Theorem 5.3]. Recall that a saturated hereditary etubiEC is a subset whose
complement satisfies axioms (T1) and (T2) of a maximal tail.

Lemma 3.1([2, Lemma 4.1]) Let E be a row-finite graph with no sources. If | is a
primitive ideal of C(E), then T:= {vc E?: p, ¢ 1} is a maximal tail of E.
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Proof. The set ofs € E? such thapy € | is a saturated hereditary set by|[13, Lemma 4.5]
(see alsol[3, Lemma 4.2]). So its complem@&nsatisfies (T1) and (T2). To estab-
lish (T3), fixv,w € T. Take an irreducible representationC*(E) — #(¢) such that
ker(r) =1. Sincev e T, we havepy ¢ |, and sor(py).#Z # {0}. Fix & € ri(py).#
with ||¢]| = 1. Sincepw ¢ |, the spacen(pw)7 is also a nontrivial subspace of
2. Sincertis irreducible,é is cyclic for 1, and so there exists c C*(E) such that
(pw) (@))€ = m(pwapy)é is nonzero. In particular, we havepyap,) # 0. Since
C*(E) = spar{sys; : S(4) = s(v)}, and sincepws,Sypv # 0 only if r(u) = w and
r(v) =v, we have

m(pwapy) € Span 7(sysy) : 1 (1) = w,r(v) = v,s(u) = s(v)} \ {0}.
So there exisy,v € E with r(u) =w, r(v) = v, s(u) = s(v), and 1i(su Ps,ySy) =
m(sysy) # 0. In particular, m(pg ) # 0, giving pg,y ¢ 1. Sos(u) € T satisfies
WE*s(u),vE*s(u) # 0. O

Next we show how to recover a family of primitive ideals fronetshift-tail equiva-
lence class of an infinite path.

Lemma 3.2. Let E be a row-finite directed graph with no sources. For E* and
zc T, there is an irreducible representatiog ; : C*(E) — %(¢2([x])) such that for all
ye [X,ve E%and ec EY, we have

Z5ey ifr(y1) =s(e
0 otherwise.

Mz(Pv)dy = {dj U=V and m(s)dy = {

0 otherwise
We have{v € E?: p, ¢ ker(1g;)} = [x]°.

Proof. It is easy to check tha®([x]) is an invariant subspace 6t(E%) for the infinite-
path space representation|of[13, Example 10.2] (Withl). So the infinite-path space
representation reduces to a representatiosgo¢?([x)). Precomposing with the gauge
automorphisny; : se— zs of [13, Proposition 2.1] yields a representatigy satisfying
the desired formula.

To see thatg; is irreducible, first observe that for eaghthe rank-1 projectiory x
ontoCdy is equal to the strong limit

6x,x = rllmo 7-5<72<S°<1~~~Xn3§1~--xn)-

If y,z € [x], theny = pyw andz= vw for someu,v € E* andw € [x]. Thus the rank-1
operatorg,; from C4, to Cdy is in the strong closure of the image 1

6z = 2" MIT2(51) BTz (S}) = M Thea(2 Sy Sy )

So.# (¢2([x])) is contained in the strong closurem,(C*(E)). Thusrg_ is irreducible.
If v ¢ [x° thenv # r(y1) for anyy € [x], and so the formula forg , shows that

pv € ker( ;). On the other hand, ¥ € [x]°, then we can fing € [x] with r(y;) = v,

and thervg (py)dy = &y # 0. O
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Next we want to know when two of the irreducible represeanteticonstructed as in
Lemmd3.2 have the same kernel. For the following, recallitha C EC is a hereditary
set (i.e.,E%\ H satisfies axiom (T1) of a maximal tail.), thé&\ EH is the subgraph
of E with verticesE®\ H and edge€®\ E'H. Note that ifT is a maximal tail, then
H :=E%\ T is a saturated hereditary set, and tEepEH = ET.

Proposition 3.3. Let E be a row-finite graph with no sources. Fiyx E* andwze< T.
The irreducible representatiorns,y and 75,; have the same kernel if and only[fqo =

[y]o and V\Fe'([x}o) = ZPer([x]O)_

The crux of the proof of Propositidn 3.3 is Lemimal3.5, which state separately
because it is needed again later to prove that every prignitigal is of the form .
Our proof of Lemma3l5 in turn relies on the following starditact about kernels of ir-
reducible representations; we thank the anonymous refilerseggesting the following
elementary proof.

Lemma 3.4. Let A be a C-algebra, let J be an ideal of A, and l&i and & be irre-
ducible representations of A that do not vanish on J. Thex(vg ) = ker(7n) if and only
if ker(rg) NJ =ker(mm) N J.

Proof. The “ = " direction is obvious. Suppose that kex) NJ = ker(te) NJ. By
symmetry, it suffices to show that Ker ) C ker(1n). Sincers is irreducible, kefrn) is
primitive, and hence prime (see, for example, [12, Propwsi8.13.10]). By assump-
tion, we have kgrmm) NJ = ker(e) NJ C ker(1k). Sincers does not vanish od, we
haveJd ¢ ker(1e). So primeness of kérp) forces kefrm) C ker(1n). O

Lemma 3.5. Let E be a row-finite graph with no sources, and suppose thad @ i
maximal tail of E. Let H=E°\ T.

(1) Suppose that T is an aperiodic tail armdis an irreducible representation of
C*(E) such that{v € E®: r(py) # 0} = T. Thenkerrmis generated as an ideal
by{pv:veH}.

(2) SupposethatT is acyclic tail and thais a cycle with no entrance in T. Suppose
that i, and 7% are irreducible representations of‘CE) such that

{vim(p)#0} =T = {v: m(py) #0}.

Then eaclhrs restricts to a 1-dimensional representation of(§,), andkerry =
kermp if and only if i (s,) = ®(Sy) as complex numbers. Eag&errg is gener-
ated as an ideal bypy : v H} U{7%(Su)Pr(u) — Su}-

Proof. We start with some setup that is needed for both statemesetd. e the ideal
of C*(E) generated by{py :ve H}. ThisH is a saturated hereditary set. 7ifis an
irreducible representation such tHatc E°: 7(py) # 0} = T, thenl is contained in ker
by definition. By [13, Remark 4.12], there is an isomorphiShE) /I = C*(E\ EH)
that carriespy + 1 to py for ve E9\ H. Sincel C kerm, the representatiornr descends
to an irreducible representation©f(E) /I, and hence determines a representafiarf
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C*(E\ EH) such that
fi(py) = m(py) forve EC\ H.

Now, for[(1), if T is an aperiodic maximal tail, ardis as above, then every cycle in
E\H has an entrance B\ H, anditis a representation &*(E \ EH) such that( p,) #

0 for allv € (E\ EH)°. So the Cuntz—Krieger uniqueness theorem [13, Theorem 2.4]
implies thatitis faithful. Hence kerr= I, proving (1).

For[(2], consider the ided of C*(E\ EH) generated by ). Theni(J) # {0}
fori =1,2. So Lemma 3l4 implies thak and» have the same kernel if and only
if ker(7n) NJ = ker(7e) NJ. SinceJ is generated as an ideal gy ), the corner
Pri) I Pr(p) = sp—ar{s“ns;zm :m,n € N} is full in J. Rieffel induction from aC*-algebra
to a full corner is implemented by restriction of represéates [14, Proposition 3.24].
Since Rieffel induction carries irreducible represewntagito irreducible representations
and induces a bijection between primitive-ideal spacesdedrice that eaclt is an
irreducible representation 6f(s,) C J, and that

kerin = kerip = ker(7m) N Pr (I Pr () = Ker(Te) N Pr () I Prp)-

Sincep has no entrancey, is a unitary element oy () J py (), SOC*(su) = C(T(Sy))-
Since the irreducible representations of a commutaii-algebra are 1-dimensional,
we deduce that eady is a 1-dimensional representation@f(s,) € C*(E\ EH) and
hence eacl is a 1-dimensional representation@f(s,) € C*(E). Moreover,7z and
o have the same kernel if and only if they are implemented bjuati@an at the same
pointzin o(sy), and hence if and only it (sy) = ®(Sy).

For the final statement fixe {1,2}. Sincel is contained in the ideal generated by
{pv:veH}U{mm(sy)pr(y) —Su}, we have) = kerrg if and only if ker is equal to the
imageJ” of J’/I in C*(E\ EH). Since Rieffel induction induces a bijection on ideal-
spaces, ke = J" if and only if p; () kerfgpy ) = Pr(u)d” Pr(w)- Both of these ideals
coincide with the maximal ideal corresponding to the complemberrg(s,) € a(sy),
so we are done. O

Proof of Propositio 313The final statement of Lemnia 8.2 implies that if kg, =
kerm,,, then[x® = [y]°. So it suffices to prove that [K° = [y]°, then

(1) kerTs,, = kerr,, if and only ifwPe(X°) = Pelx’),

For this we consider two cases. First suppose [pi&is an aperiodic maximal tail.
Then Lemma3[5(1) implies that each of ki, and ke, is generated byp, :v¢ T},
and in particular the two are equal. Alsa®®(X%) = w0 = 1 = 2 = Pe(X°) 50 the
equivalencel(1) holds.

Now suppose thaix|? is cyclic, and letu be a cycle with no entrance w°. We
must show that kefi,\y = kerfg,; if and only if wiHl = ZHl. Sincepu has no entrance,
both 75w (Pr (1)) ¢2([X]) and7s,2(pr ) ) £%([y]) are equal to the 1-dimensional spabg),
and we have
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So, identifying the image af (C*(s,)) with C, we haverg (s, ) = wi#| and similarly

W2(sy) = ZH. So Lemmd3J5(2) shows that ke, = kerr, if and only if ZH! =
1]

Wikl U

We are now ready to state and prove our first main result—é&ocatea of the primitive
ideals ofC*(E). Propositior 3.3 says that the following definition makessse

Definition 3.6. Let E be a row-finite directed graph with no sources. Suppose€lthsit
a maximal tail inE® and thatz e {wP®(T) : we T} C T. We define

I, := ker7yy, for any (x,w) € E® x T such thafx]® = T andw™®(T) = z
Theorem 3.7.The map(T,z) — |1, is a bijection from
{(T,w&M)) : T is a maximal tail, we T}
to PrimC* (E).

Proof. Lemma[ 3.2 shows that eath; is a primitive ideal. Proposition 3.3 shows that
(T,z) — I7 2 is injective. So we just have to show that it is surjectivex &iprimitive
idealJ of C*(E), letT = {v: py ¢ J}, and letrtbe an irreducible representation@f(E)
with kernelJ. ThenT is a maximal tail according to Lemrha B.1. We must show fhat
has the formi ,.

If T is aperiodic, then Lemmia_3.5{1) shows thiat kermm = kerrg 1 = lxj0,1 for any
x such thafx]® =T.

If T is cyclic, letu be a cycle with no entrance ih. Lemmal3.p(2) shows that
m(C*(sy)) is one-dimensional, so we can identifys, ) with a nonzero complex num-
berz. Sinces, is an isometry|z| = 1. Now Lemma_3J5(2) implies that any< T with

wlHl = z satisfies kerr= kerquw]O,w = '[x}O,Z' -

4. THE CLOSURE OPERATION

The Jacobson, or hull-kernel, topology on P@HE) is the one determined by the
closure operatioX = {I € PrimC*(E) : NexJ C | }. The ideals o£*(E) are in bijec-
tion with the closed subsets of Pri®i(E): the ideallx corresponding to a closed subset
Xis

Ix = MNyexJ-

So the first step in describing the ideals@f(E) is to say when a primitive ideal
| belongs to the closure of a sEtof primitive ideals. We do so with the following
theorem.

Theorem 4.1.Let E be a row-finite graph with no sources. Let X be a set ofsdirz)
consisting of a maximal tail T and an element wf®(") : w ¢ T}. Consider another
such pair(S,w). Then »ex Iz C Isw if and only if both of the following hold:

a) SC U(T,Z)EXT’ and
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b) if S is a cyclic tail and the cyclg with no entrance in S also has no entrance in
U.gex T, then
we {z: (S 2z € X}.
We will need the following simple lemma in the proof Theorleri,&and at a number
of other points later in the paper.

Lemma 4.2.Let E be a row-finite graph with no sources, let H be a saturaereditary
subset of C(E) and letu be a cycle with no entrance in’& H. Let Iy be the ideal of
C*(E) generated by py : v€ H}. Then there is an isomorphism

(Pr(w)C™ (E) Pr(w)/ (Pr ()1 Pr () = Pr()C (E\EH)prp)

carrying S + Pr(u)IH Pr(y) to sy, and there is an isomorphism of p/C*(E \ EH) py ()
onto QT) carrying S to the generating monomial function-z z.

Proof. Remark 4.12 of [13] shows that there is an isomorpt@sie) /Iy = C*(E\ EH)
that carriese + Iy to se if ee El\ElH and to zero otherwise This restricts to the de-
sired isomorphisrpr( YC(E) Pr(w)/ Pr () H Pr (u) = Pr(w)C* (E\EH) pr(py- The element
Su € Pr()C*(E\EH)py () satisfiess; sy = pr(y) = s“s* becauseu has no entrance in
EO\ H. So it suffices to show that the spectrunspttalculated inp;(,\C*(E\EH) py(y)

is T. To see this, observe that the gauge acticsatisfiesyy(s,) = wiHl(s,). So for
A,we T, Apy — sy is invertible if and only ify(A pr() — su) = WHI (W IHIA pr ) —
su)- Thatis,o () is invariant under rotation by elements of the fon¥!, which is all

of T. Since the spectrum is nonempty, it follows that it is the {elarcle. O

Proof of Theorerh 411We first prove the “if” direction. So suppose that|(a) ahd (b)
are satisfied. We consider two cases. First supposeStisaan aperiodic tail. Then
Per(S) = {0}, and sowv = 1. For each maximal tail of E, let

T_:=T\{v:vlies on a cycle with no entrance T},

and letlt_ be the ideal generated Ky, : v¢ T_}. If T is a cyclic maximal tail angu
is a cycle with no entrance i, and ifze {wP®(T) : w e T}, then Lemm&3J5(2) shows
thatlt ; is generated bypy : V& T} U {zp((u) —sy}t. Solrz Clr . So it suffices to
show that

NTzexIT Clsa
For this it suffices to show thaft »cx T- 2 S We fixv e EO\U(TJ)EX T_ and show
thatvg S If v¢ T for all (T,z) € X, then it follows from [(d) that ¢ S So we may
assume that € (Uit 2exT) \ (Ur.z)ex T-)- In particular, there exist paifd’,z) € X
such thatv € T. Fix any such pair. Since ¢ T_, it must lie in a cycleu in T with
no entrance inr. Property (T1) shows that is contained entirely i, and then
Lemmd2.2 then giveE = [u®]° =r(E*v). Sou has no entrance if(E*v), and the only
pairs(T,z) € X with v e T satisfyT = r(E*v). Thusp has no entrance i)t ,ex T-
SinceSC Ut »ex T, and every cycle itshas an entrance i, we deduce thatt does
not lie inSand hence ¢ Sas required.
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Now suppose thabis cyclic andu is a cycle with no entrance i& LetV be the set
of vertices onu. Lemma 2.2 giveS= {r(a) :s(a) € V}. SinceSC U »ex T, there
exists(T,z) € X with r(u) € T. SinceT satisfies (T1), we deduce that the cypldies
in the subgrapheT of E. So there exist§T,z) € X such thal C T, and therSC T
becaus&s= {r(a):s(a) € V} andT satisfies (T1). So it suffices to show that

NT2ex.5cT 172 € lse-

For this, first suppose that there exi§isz) € X such thafl is a proper superset &
sayve T\ S SinceS={r(a):s(a) €V}, we see thatE*V = 0, and henceE*S= 0.
So there existe € T \ Ssuch thaV E*w andvE*w are both nonempty. Hence

TO{r(a):s(a)=w}2{r(a):s(a)eV}=S

If T is a cyclic tail, the cycle with no entrance that it contailes loutside ofS, so the
final statement of Lemmnia_3.5{2) shows that all the generaffdrs, belong tolsy; and
if T is aperiodic, then all the generatorslpf belong tols, by Lemma&3.5(1). In either
case, we conclude thht; C Isy, and hencqﬂ(n)exvsg Itz C lsw-

So it now suffices to show th@lt, s, ex Isz C Isw- Letls be the ideal generated by
{pv:Vv¢S}. Then eaclis; containsls, as doedsy, so we need only show that in the
quotientC*(E)/lIs= C*(ES), the intersection of the imagédgof thels; is contained in
Jw. EachJ; is generated byp ;) — sy and is therefore contained in the ideal generated
by pr(uy, and similarly forJy. Since the ideal generated Ipy(,,) is Morita equiva-
lent to the corner determined kpy ), it suffices to show thaf) s, ex Pr(u)JzPr () S
Pr () IwPr (). The isomorphisnp;,)C*(ES) pr(y) = C(T) of Lemmal4.2 carries each
Pr(u)JzPr () 0 {f € C(T) : f(2) = 0}. SO((5zex Pr(u)JzPr (u) is carried to{ f € C(T) :

f =0o0n{z: (S z) € X}}, and in particular is contained in the imageppf,) Jwpr (p)-

We now prove the “only if” direction. To do this, we prove thentrapositive. So we
first suppose that (n) does not hold. Then there is smméS\U(Tyz)T. This implies
thatpy € I (1 4 forall (T,z), butpy € Isw, and sq"\(1 ;) I1.zi € Isw as required.

Now suppose thab C |, T, thatp is a cycle with no entrance i and thatu
also has no entrance iyt »ex T, and thatv ¢ {z: (S z) € X}. As aboveS= {r(a):
s(a) =r(u)}, and sinceu has no entrance in any, for each(T,z) we have eithel =S

orr(u) ¢ T. Whenever(u) ¢ T, we havep, ) € I (1, and so\t 2 Pr(u)l1.2Pr () =
N(s2)ex Pr(u!szPr(y)- Once again taking quotients by, it suffices to show that

(1 Py IePr(uy Z Pr(pyIuPr(u)-
(Sz)ex

Sincew & {z: (S,z) € X}, there existd € C(T) such thatf (w) = 0 andf(z) = 1 when-
ever(S,z) € X. Letg=1— f € C(T). Then the images of the elemeritandg belong
t0 ((s2)ex Pr(u)dzPr(y) @Nd Pr(u)dwpr () respectively. Their sum is the identity element
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Pr(y)» Which does not belong tdy. Thus

Pr(ydwPr(y + () Pr(uydzPr () # -
(S2)eX

Consequently(szex Pr(u)JzPr(u) € Pr(u)ydwPr(p)- O]

5. THE IDEALS OFC*(E)

We use Theorern 4.1 above to describe all the idealS*0E). We index them by
what we call ideal pairs foE. To define these, given a saturated hereditaryiset E°,
we will write & (H) for the set

%(H) := {u : uis a cycle with no entrance %\ H}.

An ideal pairfor E is then a pai(H,U ) whereH is a saturated hereditary set, ahds a
function assigning to eagh € ¥’ (H) a proper open subset( ) of T, with the property
thatU (i) = U (v) whenevefu®] = [v*].

Observe that if the maximal tai®\ H is aperiodic, so tha’(H) = 0, then there is
exactly one ideal pair of the foritH,U ): the functionU is the unique (trivial) function
from the empty set to the collection of proper open subsets of

To see how to obtain an ideal 6f (E) from an ideal pair, we need to do a little bit of
background work.

For each open subsgtC T, we fix a functionhy € C(T) such that

{zeT:hy(z) #0} =U.
For example, we could take
hy(2) :==inf{|lz—w|:w¢&U}.

Let 11: C(T) — ¢?(Z) be the faithful representation that carries the generatiogo-
mial z— zto the bilateral shift operatd : e, +— e,.1. The classical theory of Toeplitz
operators says that B, : /2(Z) — ¢?(N) denotes the orthogonal projection onto the
Hardy spacé&pare, : n > 0}, then there is an isomorphismfrom P, i(C(T))P;. to
the Toeplitz algebraZ C ¢?(N) generated by the unilateral shift operagsuch that if
q: .7 — C(T) is the quotient map that divides out the ideal of compactatpes, then
g(p(Pym(f)Py)) = f for everyf € C(T).

If H C EV is saturated and hereditary, then for eacke ¢(H), we havesys; <
Pr(u) = SySu, With equality precisely if1 has no entrance iB°. So if u has no entrance

in EY, thens, is unitary in Pr(u)C*(E)Pr(y)» and we can apply the functional calculus

in the corner to define a nonzero elemhnts,) € C*(E). If u has an entrance i&°,
ther!s“sfl < s;;Su, o Coburn’s theorem [5] gives an isomorphigm 7 = C*(s;,) that
carriesSto ;.
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Using the preceding paragraph, given an ideal fdilJ ) and givenu € ¥ (H), we
obtain an element; € C*(sy) € Pr(,)C*(E)pr(y) given by

U hy () (Su) if u has no entrance ig°
K W(p(Pym(hyw)Py)) otherwise.

Theorem 5.1. Let E be a row-finite graph with no sources. L&t denote the set of all
ideal pairs for E. For eacliH,U) € .7, let }4 y be the ideal of C(E) generated by

{pv:veH}U{r :pe?(H)}
(1) The map(H,U) — Jyu is a bijection of #g onto the collection of all closed
2-sided ideals of QE).
(2) Given an ideal | of C(E), let H := {ve E®: p, €1}, and foru € €(H)), let
U (u) = 11‘\speqpr(u)H)(C*(E)/l)(pr(u)+,)(su +1). Then(H;,U,) is an ideal pair
and | = JH| U -

Before proving the theorem, we need the following lemma.

Lemma 5.2. Let E be a row-finite directed graph with no sources. UdtU) be an
ideal pair for E, let T be a maximal tail of E and takesz{w”®T) : w ¢ T}. Then
Jhu C Itz if and only if both of the following hold:
a) HC E®\T;and
b) if T is cyclic and the cycl@ with no entrance in T belongs t6(H), then z¢Z
U (k).
In particular, we have(v: py € Jyu} =H.

Proof. For the “if” direction, fixx € E® such thafl = [x|° andw € T such that"¢(T) =

z. We just have to show thai , annihilates all the generators &f y. For this, first fix
v e H. Then the final statement of Lemrnal3.2 shows fhat kerrs . Now fix u €
C(H). Ifr(u) ¢ T, thenmgw(pr(y)) = 0 as above and then sincﬁ € Pr(w)C*(E)Pr(p)s

it follows that T&,W(TH) = 0. So suppose thafu) € T. Sinceu has no entrance in
EO\ H and sincel C E®\ H, the cycleu has no entrance ifi. SoT is a cyclic maximal
tail, and[x|® = [u*]° by Lemmd2.2. We then hawez U (1) by hypothesis. The ide#)
generated bypy : ve H} is contained in keirg ), SOT% \ descends to a representation
xw of C*(E)/lu. Lemmal4.R shows that,,)C*(E)pr(u)/ Pr(w)! Pr(u) = C(T), and
this isomorphism carries the restriction f,, to the 1-dimensional representatien
given by evaluation at. The isomorphism of Lemnia 4.2 also carri%‘s—i— Pr () Pr(u)
to hy (. Sincez ¢ U(u), we haveg,(hy(,)) =0, and sor&w(rﬁ) = 0. So all of the
generators oy y belong to kerg, as required.

For the “only if” implication, we prove the contrapositivéigain fix X € E* such
thatT = [x]° andw € T such thaw”®(") = z, so thatit , = kerr. First suppose that
H ¢ EO\T; sayve TnH. Thenp, € Jn.u by definition, butpy & kerrg, by the final
statement of Lemma 3.2, givinly y Z kerr. Now suppose thdt C E®\ T, thatT
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is cyclic and that the cyclg with no entrance i belongs to¢’(H), but thatze U ().
Arguing as in the preceding paragraph, we seetathy ) (2) Pr () — TH) =0. Since
TH € Jnu, we deduce thap, () € I u +kermw. Sincepy () & kerrg by Lemmd3.P,
we deduce thaly y Z kerrg .

For the final statement, observe the {v: py € J4 u } by definition. For the reverse
containment, recall that by definition of an ideal pair, ebldlp) is a proper subset of
T. So for eachu € ¢ (H), we can choose, € T\ U (u). By the preceding paragraphs,
we havelyu C Iy, for eachu € ¢'(H). For eachv e E%\ H that does not belong

to [u®]° for any u € €'(H), we can choose an infinite pathin E\ H with r(x}) = v.
Thisx¥ ¢ [u®] for u € ¥ (H) because does not belong to any®]°. So eactx’]’ is a
maximal tail contained in the complementtdfand the preceding paragraphs show that
JHu C I 1. We now have

31w S (Nuloz, ) 0 (Melep)-

By construction, the right-hand side does not confgifor anyv ¢ H, and so we deduce
thatv & H implies py ¢ Jy u as required. O

Proof of Theorerh 5]1To prove the theorem, it suffices to show that the assignment
(H,U) — Jyu is injective, and then prove statemgnt (2).
The general theory df*-algebras says that every ideal d€aalgebraA is equal to
the intersection of all of the primitive ideals that containBy definition, the topology
on Prim(A) is the weakest one in whicfi € Prim(A) : J C 1} is closed for every ideal
J of A, and the map which sendkto this closed subset of Pr{#) is a bijection.
So to prove thatH,U) — Jy u is injective, we just have to show that the closed sets
Yhu :={l € PrimC*(E) : Jqu C |} are distinct for distinct pairgH,U).
By LemmdX5.2, we have

Yoqu = {lt2: T CE%\ H is a maximal tail, and
if T is cyclic and the cyclel with no entrance i
also has no entrance kh, thenz¢ U (i) }.

Suppose thatH1,U1) and (H»,U,) are distinct ideal pairs dE. We consider two
cases. First suppose that # H,. Without loss of generality, there exists Hi \ Ho.
SinceH; is saturated, there exists € VEL such thas(e;) ¢ Hz. SinceH; is hereditary,
we haves(e) € H;. Repeating this argument we obtain edgess(g_1)E* with s(g) €
Hi\ Hz, and hence an infinite pathlying in (E\ EH;) \ (E\ EHz). Now [x°is a
maximal tail contained irH; \ Hp. If [x]° is an aperiodic tail or is a cyclic tail such
that the cycle with no entrance {®° has an entrance i& \ EH,, we setz= 1. If
[X]° = [u=]° for someu € € (H,), we choose any € T\ Uo(u). Then Lemmd 52
shows that o , € Yh, u, \ Yhy Uy -

Now suppose thatl; = Hy. ThenU; £ Uy, so we can fingt € €' (H1) = ¢ (H2) such
thatUs () # U2(u). Again without loss of generality, we can assume that theigtse



IDEALS OF GRAPH ALGEBRAS 14

z€ Ug(p) \U2(u), and then we have, o , € Yh, u, \ Yh, u,- This completes the proof
that theYy y are distinct.

It remains to prové (2). Given an ideglthe setH := H, is a saturated hereditary
set by [13, Lemma 4.5]. Since the idd@l generated by{py : v € H} is contained
in 1, Lemma 4.2 shows tha, +1 is unitary in(py,) +1)C*(E)/I (pr(u) +1) for each
U € C(H); so its spectrum is a closed subsefloshowing that), (i) is an open subset
of T. If u,v € C(H) with [u®] = [v*], thenu® = av® for some initial segmentr of
p®. The Cuntz—Krieger relations show trgys; Sq +1 =sy +1 andsysy sy +1 = s, +1;
so conjugation bgy + 1 gives an isomorphis@* (s, ) +1 = C*(sy) +1, and in particular

SPEGp, ,+1)(C*(E)/1) (prip+1) (Su+1) = SPEGp 1y (B) /1) (b 1) (Sv + 1),

givingU; (1) =U;(v). So(H,U) is an ideal pair.

To see that = Jy, y,, we first check the containment For this, it suffices to show
that every generator dfy, y, belongs td. We havepy € | for all v € H, by definition.
Fix 4 € € (H,); we must show thatﬁ' € |. For this, letly be the ideal o€*(E) gener-
ated by{py: ve H}. Sincely is contained in both andJy, y, we just have to show that
Jn v, /1n is contained in /1. For this, letr: py(,)C*(E) pr () — C(T) be the composi-
tion of the isomorphism of Lemnia 4.2 with the canonical sttige py () C* (E) pr () —
(Pr(w) +1H)(C*(E) /1) (Pr () +1H)- Thenn(rﬁ') = hy, (u) vanishes of"\ U (i), which
is Spe?pr(uﬁl)(C*(E)/I)(pr(u)—i-l)(sﬂ +1). Since the quotient map by the imagel ainder
Tt is given by restriction of functions to sp(%rc(‘mﬂ)(C*(E)/”(MH)(su +1), it follows

thatrﬁ' + 1y €1/ly as required.

For the reverse containment, recall that every ide&®I"dE) is the intersection of the
primitive ideals that contain it, so it suffices to show tHalsiy, € Yn, u,, thenl C Igy.
Fix Isw € Yn, u,- We can expresisas an intersection of primitive ideals and therefore, by
Theoreni 3.7, we have= 1 zex Iz for some seX of pairs consisting of a maximal

tail T and an elemerte {uP®(T) : uc T}. We then have
vEH <= pvel <= pveNrgex!tz <= VENT2exEO\ T,

and we deduce thad, = EO\U(Tz)eXT. Sincelsw € Y, u;, we haveSC E?\ H, =
Urgex T So if Sis an aperiodic tail, or is a cyclic tail such that the cyglevith
no entrance irS has an entrance i)t ,ex T, then Theoreni 411 immediately gives
| =N(1,29ex 17,2 € Isw- So suppose thais cyclic, and the cyclg with no entrance in
Shas no entrance i)t ex T. Again using thatsy € Yu, u,, We see thawv & U (u).
Hencew € speqpr(u)+,)(c*(E)/,)(pr(u)Jrl)(s“ +1). So if 111 pr(u)C*(E) pr(u) — C(T) is
the map described in the preceding paragraph, we fiwg¢ = 0 for all f in (1) =
N(szex M(lsz). Eachm(lsz) is the set of functions that vanisheszatso we deduce
that every function vanishing at everyor which (S z) € X also vanishes at; that is

w e {z:(S2) € X}. Now Theoreni 4]1 again givés= 1 »ex 172 C Isw- O
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Remark 5.3. To see where the primitive ideals ©f (E) fit into the catalogue of Theo-
rem5.1, first let us establish the convention th&'{H) = 0, then 0 denotes the unique
(trivial) function from% (H) to the collection of open subsets®f and that if6'(H) is

a singleton, themz denotes the function o#’(H) that assigns the valug\ {z} to the
unique element o%'(H). Now if T is a maximal tail and € {w"®(T) : w e T}, then
Lemmd3.b and the definition of the idedlsy show that

I, — Jeoyrp  if T is aperiodic
i Jeoyrz i Tis cyclic.

Remark 5.4. The idealy y is gauge invariant (i.eyz(J4 u) = Juu for everyze T) if
and only ifU (u) = 0 for everyu € ¢ (H), in which casely y = Iy. Thus, we recover
from Theoreni 5]l the description of the gauge invariantl@debC*(E) presented in
[2, Theorem 4.1].

6. THE LATTICE STRUCTURE

To finish off the description of the lattice of ideals@f(E), we describe the complete-
lattice structure in terms of ideal pairs.
We define< on the set#g of ideal pairs for a row-finite grapB with no sources by
(H1,U1) < (H2,U7) <~ Hy C Hy andUq () CUo ()
forall p € €(H1) N (H2).
In the following, givenX C T, we write In{X) for the interior ofX.

Theorem 6.1. Let E be a row-finite graph with no sources.

(1) Given ideal pair§Hy,U1) and(Hz,U>) for E, we haved, u, € Jn,u, if and only
if (Hl,Ul) = (Hz,Uz).

(2) Given a set KZ .t of ideal pairs for E, we havé](Hu)eKJH?U = JH, U Where
Hic = N1.ujex Hy and W (1) = Int (N u)ek per ) U (1))

(3) Fix a set KC .#¢ of ideal pairs of E. Let A be the saturated hereditary closure
of Unujex H. Let B={r(u) : p € €(A) and Uin u)ek pewn)Y (1) = T}. Let
HK be the saturated hereditary closure of8 in E°, and for eachu € ¢ (HK),
let U (1) = Ugnu)ex uer ) U (1) Thenspar U u)ex I1u) = Jux uk.

Proof.[(1) First suppose thaiHi,U1) < (Hz,U2). We show that every generator of
Jn, u, belongs taly, u,. For eachy € Hi we havev € H, and thereforgy € Ju, u,. Sup-
pose thai € €' (H1). If r(u) € Hy, thenpy () € Jn,u, and sorﬁl € Pr(w)C (E)Pr(p)
belongs toJy,u, as well. So we may suppose thdj) ¢ Hy,. SinceH; C Hy and
sinceu has no entrance i&®\ Hy, it cannot have an entrance EP \ Hy, so it be-
longs to%’(Hz). The ideally, generated by py : v € Hi} is contained in bottdy, u,
andJn, u,. By Lemma 4.2, we havep, () +1n,) (C*(E) /Ihy) (Pr(u) +IHy) = C(T) and
this isomorphism carriexsﬁ1 to hy,(,) and carries the image dfy, u, to {f € C(T) :
f=1(C\ {0}) CUa(u)}. SinceUs(u) C Uy(u), it follows that the image of,LlJl in the
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corner(pr(y) + In,) (C*(E) /In,) (Pr(y) + I1,) belongs to the image dfy, u,, and there-
fore rHl + 1, € I, u,, 9iVing Tﬁl € JH,,Us-

Now suppose thaly, u, € Jn,u,- The final statement of Lemma5.2 shows that
Hi C Hp, so we must show that wheneyee % (H1) N %' (Hz2), we haveJ; (i) CUa(u).
Theoreni 51 (2) shows that

Ui (“) - T \ Spe(%pr(pﬁ”\]Hi,Ui )(C*(E)/‘]Hi Ui )(pr(pﬁ”\]Hi,Ui ) (S“ + JHi Ui )

Sincedn, u;, € I, u,, there is a homomorphisop: C*(E) /In, u, — C*(E)/In,u, that
carriessy +Ju, u, 10 Sy + Jn,u,- In particular,g carriespy () + JIn; u; 10 Prp) + I, Uy,
and so induces a unital homomorphism between the cornezsnteed by these pro-
jections. Since unital homomorphisms decrease spectrabtan

SPEGp, ) +3r,0,)(C*(E) /3y ) (e +rp ) (S + IHU2)
C SPEGp, 113k, uy) (C*(E),/dhy uy) (P +y uy) (S T IHL U )

and henc&Ji () C Ua(p).

[(2): The idealﬂ(HM)eK Juu is the largest ideal that is containedJny for every
(H,U) in K. Since the magH,U) — Jyu is a bijection carrying< to C, it suffices
to show that(Hk,Uk) < (H,U) for all (H,U) € K, and is maximal with respect to
=< amongst pairgH” U") satisfying(H”,U”) < (H,U) for all (H,U) € K. The pair
(Hk,Uk) satisfies(Hk,Uk) < (H,U) for all (H,U) € K by definition ofHx andUk.
Suppose thatH”,U”) < (H,U). ThenH” C H for all (H,U) € K, and hencél” C H;
and ifu e €(H")N%¢(Hk), and if(H,U) € K satisfiesu € ¢ (H), thenU”(u) CU(u)
becausgH”,U") < (H,U). SoU”(u) is an open subset 0l y)ck uewn) U (1), and
therefore belongs to Iy yyek yew ) U (M) = Uk.

[3): The idealspar{ U ujek JHu) is the smallest ideal containingy y for every
(H,U) in K. So as above it suffices to show tifkit, U) < (HX,UX) forall (H,U) € K,
and that(HX,UX) is minimal with respect tox amongst pair§H”,U") satisfying
(H,U) < (H"”,U”) for all (H,U) € K. The pair(HK,UK) satisfiegH,U) < (HK,UK)
for all (H,U) € K by construction. Suppose thg@i” ,U") is another ideal pair satis-
fying (H,U) < (H”,U”) for all (H,U) € K. We just have to show thgtH¥ UK) <
(H”,U”). We haveH C H” for every (H,U) € K, and sinceH” is saturated and
hereditary, it follows thatA C H”. If v € B, then there existp: € ¢ (A) such that
UH.u)ek uezr) U (H) = T, and then by compactness @f there are finitely many
pairs (H1,Us),...,(Hn,Un) € K such thatu € ¢ (H;) for eachi, and ;U (u) =
T. Choose a partition of unityfy,..., fa} € C(T) subordinate to th&J;. Let Ia be
the ideal ofC*(E) generated by py : v A}. Then eachf; belongs to the image of
Pr(u)d(Hi,u;) Pr(w) Under the isomorphism of Lemrha #.2, and se §; fi belongs to the
image of 3! ; Pr(u)dH U Pr (). Since each(H;,U;) =< (H” K™, it follows that 1 be-
longs to the image aJy~ k). But the preimage of 1 ig; () + 1a, and we deduce that
Pr(u) € Jmr k- The final statement of Lemnia .2 therefore implies thatH”. So
AUB C H”, and sinceH” is saturated and hereditary, it follows thaf C H”. Now



IDEALS OF GRAPH ALGEBRAS 17

suppose thati € € (HX)N & (H"). For eachz € UX (), there exist§H,U) € K such
thaty € ¢(H) andze U(u). Since(H,U) < (H”",U")andu € ¢(H")N€(H), we
deduce thaz € U”(u). SoUX(u) CU”(u). So we havgHK,UK) < (H”,U") as
required. O
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