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ON HONG AND SZYMA ŃSKI’S DESCRIPTION OF THE
PRIMITIVE-IDEAL SPACE OF A GRAPH ALGEBRA

TOKE MEIER CARLSEN AND AIDAN SIMS

ABSTRACT. In 2004, Hong and Szymański produced a complete description of the
primitive-ideal space of theC∗-algebra of a directed graph. This article details a slightly
different approach, in the simpler context of row-finite graphs with no sources, obtain-
ing an explicit description of the ideal lattice of a graph algebra.

1. INTRODUCTION

The purpose of this paper is to present a new exposition, in a somewhat simpler
setting, of Hong and Szymański’s description of the primitive-ideal space of a graphC∗-
algebra. Their analysis [8] relates the primitive ideals ofC∗(E) to the maximal tailsT of
E—subsets of the vertex set satisfying three elementary combinatorial conditions (see
page 3). In previous work with Bates and Raeburn, Hong and Szymański had already
studied the primitive ideals ofC∗(E) that are invariant for its gauge action. Specifically,
[2, Theorem 4.7] shows that the gauge-invariant primitive ideals ofC∗(E) come in two
flavours: those indexed by maximal tails in which every cyclehas an entrance; and those
indexed bybreaking vertices, which receive infinitely many edges inE, but only finitely
many in the maximal tail that they generate. Hong and Szymański completed this list by
showing in [8, Theorem 2.10] that the non-gauge-invariant primitive ideals are indexed
by pairs consisting of a maximal tail containing a cycle withno entrance, and a complex
number of modulus 1.

The bulk of the work in [8] then went into the description of the Jacobson, or hull-
kernel, topology on PrimC∗(E) in terms of the indexing set described in the preceding
paragraph. Theorem 3.4 of [8] describes the closure of a subset of PrimC∗(E) in terms
of the combinatorial data of maximal tails and breaking vertices, and the usual topol-
ogy on the circleT. (Gabe [7] subsequently pointed out and corrected a mistakein [8,
Theorem 3.4], but there is no discrepancy for row-finite graphs with no sources.) The
technical details and notation involved even in the statement of this theorem are formi-
dable, with the upshot that applying Hong and Szymański’s result requires discussion of
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a fair amount of background and notation. This is due to some extent to the complica-
tions introduced by infinite receivers in the graph (to see this, compare [8, Theorem 3.4]
with the corresponding statement [8, Corollary 3.5] for row-finite graphs). But it is also
caused in part by the numerous cases involved in describing how the different flavours
of primitive ideals described in the preceding paragraph relate to one another topologi-
cally.

Here we restrict attention to the class of row-finite graphs with no sources originally
considered in [11, 10, 3]; it is a well-known principal that results tend to be cleaner in
this context. TheC∗-algebra of an arbitrary graphE is a full corner of theC∗-algebra of
a row-finite graphEds with no sources, called a Drinen–Tomforde desingularisation E
[6], so in principal our results combined with the Rieffel correspondence can be used to
describe the primitive-ideal space and the ideal lattice ofany graphC∗-algebra. But in
practice there is serious book-keeping hidden in this innocuous-sounding statement.

We take a somewhat different approach than Hong and Szymański. We start, as they
do, by identifying all the primitive ideals (Theorem 3.7)—though we take a slightly dif-
ferent route to the result. Our next step is to state precisely when a given primitive ideal
in our list belongs to the closure of some other set of primitive ideals (Theorem 4.1).
We could then describe the closure operation along the linesof Hong and Szymanski’s
result, but here our approach diverges from theirs. We describe a list of (not necessarily
primitive) idealsJH,U of C∗(E) indexed byideal pairs, consisting of a saturated heredi-
tary setH and an assignmentU of a proper open subset of the circle to every cycle with
no entrance in the complement ofH. We describe eachJH,U concretely by providing a
family of generators. We prove that the map(H,U) 7→ JH,U is a bijection between ideal
pairs and ideals, and describe the inverse assignment (Theorem 5.1). Finally, in Theo-
rem 6.1, we describe the containment relation and the intersection and join operations
on primitive ideals in terms of a partial ordering and a meet and a join operation on ideal
pairs.

One can recover the closure of a subsetX ⊆ PrimC∗(E), and so Hong and Szymań-
ski’s result, either by using the characterisation of points in X from Theorem 4.1, or by
computing

⋂

X using Theorem 6.1 and listing all the primitive ideals that contain this
intersection. To aid in doing the latter, we single out the ideal pairs that correspond to
primitive ideals (Remark 5.3), and identify when a givenJH,U is contained in a given
primitive ideal (Lemma 5.2).

We hope that this presentation of the ideal structure ofC∗(E) whenE is row-finite
with no sources will provide a useful and gentle introduction to Hong and Szymański’s
beautiful result for arbitrary graphs; and in particular that it will be helpful to readers
familiar with the usual listing of gauge-invariant ideals using saturated hereditary sets.

Acknowledgement. The exposition of this paper has benefitted greatly from the
suggestions of a very helpful referee. Thanks, whoever you are.

1.1. Background. We assume familiarity with Raeburn’s monograph [13] and take
most of our notation and conventions from there. We have madean effort not to as-
sume any further background.
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We deal with row-finite directed graphsE with no sources; these consist of countable
setsE0, E1 and mapsr,s : E1 → E0 such thatr is surjective and finite-to-one. A Cuntz–
Krieger family consists of projections{pv : v∈ E0} and partial isometries{se : e∈ E1}
such thats∗ese = ps(e) and pv = ∑r(e)=vses∗e. We will use the convention where, for
example, forv∈ E0 the notationvE1 means{e∈ E1 : r(e) = v}. A path of lengthn> 0
is a stringµ = e1 . . .en of edges wheres(ei) = r(ei+1), andEn denotes the collection
of paths of lengthn. We write E∗ for the collection of all finite paths (including the
vertices, regarded as paths of length 0), and setvE∗ := {µ ∈ E∗ : r(µ) = v}, E∗w :=
{µ ∈ E∗ : s(µ) = w} andvE∗w= vE∗∩E∗w whenv,w∈ E0.

2. INFINITE PATHS AND MAXIMAL TAILS

Our first order of business is to relate maximal tails in a graph with the shift-tail
equivalence classes of infinite paths (see also [9]).

Recall that amaximal tailin E0 is a setT ⊆ E0 such that:

(T1) if e∈ E1 ands(e) ∈ T, thenr(e) ∈ T;
(T2) if v∈ T then there is at least onee∈ vE1 such thats(e) ∈ T; and
(T3) if v,w∈ T then there existµ ∈ vE∗ andν ∈ wE∗ such thats(µ) = s(ν) ∈ T.

If T is a maximal tail, there is a subgraphET of E with verticesT and edgesE1T :=
{e∈ E1 : s(e) ∈ T}.

An infinite pathin E is a stringx= e1e2e3 · · · of edges such thats(ei) = r(ei+1) for
all i. We let r(x) := r(e1). Two infinite pathsx andy are shift-tail equivalent if there
existm,n∈ N such that

xi+m = yi+n for all i ∈ N.

This shift-tail equivalence is (as the name suggests) an equivalence relation, and we
write [x] for the equivalence class of an infinite pathx.

Shift-tail equivalence classes[x] of infinite paths correspond naturally to irreducible
representations ofC∗(E) (see Lemma 3.2). However, the corresponding primitive ideals
depend not on[x], but only on the maximal tail consisting of vertices that arethe range
of an infinite path in[x]. The next lemma describes the relationship between shift-tail
equivalence classes of infinite paths and maximal tails.

Lemma 2.1. Let E be a row-finite graph with no sources. A set T⊆ E0 is a maximal
tail if and only if there exists x∈ E∞ such that T= [x]0 := {r(y) : y∈ [x]}.

Proof. First suppose thatT is a maximal tail. ListT = (v1,v2, . . .). Setλ1 = µ1 =
v1 ∈ E∗, and then inductively, having chosenµi−1 ∈ vi−2E∗ and λi−1 ∈ vi−1E∗ with
s(λi−1) = s(µ), use (T3) to findµi ∈ vi−1E∗ andλi ∈ viE∗ such thats(µi) = s(λi) ∈ T.
We obtain an infinite pathx= µ1µ2µ3 · · · . Since eachλiµi+1µi+2 · · · belongs to[x], we
haveT ⊆ [x]0. For the reverse containment, observe that ifv ∈ [x]0, then there exists
y ∈ [x] such thatv = r(y1). By definition of [x] there arem, i such thats(ym) = s(µi).
Sinceµi ∈ T, mapplications of (T1) show thatr(y1) ∈ T. �
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We divide the maximal tails inE into two sorts. Those which have a cycle with
no entrance, and those which don’t. The main point is that, aspointed out in [8], ifT
contains a cycle without an entrance, then it contains just one of them, and is completely
determined by this cycle.

A cyclein a graphE is a pathµ = µ1 . . .µn ∈ E∗ such thatr(µ1) = s(µn) ands(µi) 6=
s(µ j) wheneveri 6= j. Each cycleµ determines an infinite pathµ∞ := µµµ · · · and
hence a maximal tailTµ := [µ∞]0; it is straightforward to check that

Tµ = {r(λ ) : λ ∈ E∗r(µ)}.

Given a cycleµ ∈ E∗ and a subsetA of E0 that contains{r(µi) : i ≤ |µ|}, we say that
µ is a cycle with no entrance in Aif {e∈ r(µi)E1 : s(e)∈A}= {µi} for each 1≤ i ≤ |µ|.

Lemma 2.2. Let E be a row-finite graph with no sources. Suppose that T⊆ E0 is a
maximal tail. Then either

a) there is a cycleµ with no entrance in T such that T= Tµ , and thisµ is unique up
to cyclic permutation of its edges; or

b) there is no cycleµ with no entrance in T .

Proof. Suppose that there is a cycleµ with no entrance inT. Lemma 2.1 implies that
T = [x]0 for some infinite pathx. So there existsy∈ [x] such thatr(y) = r(µ), and since
shift-tail equivalence is an equivalence relation, we thenhaveT = [y]0. Sinceµ has no
entrance inT, the only element ofE∞ lying entirely within T and with ranger(µ) is
µ∞. Soy= µ∞, andT = [µ∞]0 = Tµ .

If ν is another cycle with no entrance inT = Tµ then r(ν)E∗r(µ) 6= /0, sayλ ∈
r(ν)E∗r(µ). Sinceν has no entrance inT, we haveλ µ = ν∞

1 · · ·ν∞
k for somek. In

particularν∞
k−|µ|+1 · · ·ν

∞
k = µ, and we deduce thatν = µi · · ·µ|µ|µ1 · · ·µi−1, wherei ≡

k+1 (mod |µ|). �

We call a maximal tailT satisfying (a) in Lemma 2.2 acyclic maximal tailand write
Per(T) := |µ|. We call a maximal tailT satisfying (b) in Lemma 2.2 aaperiodic maxi-
mal tail, and define Per(T) := 0.

3. THE IRREDUCIBLE REPRESENTATIONS

In this section, we show that every primitive ideal ofC∗(E) naturally determines a
corresponding maximal tail, and then construct a family of irreducible representations
of C∗(E) associated to each maximal tail ofE.

The following lemma constructs a maximal tail from each primitive ideal ofC∗(E). It
was proved for arbitrary graphs in [2, Lemma 4.1] using the relationship between ideals
and saturated hereditary sets established there and that primitive ideals of separableC∗-
algebras are prime. Here we present instead the direct representation-theoretic argument
of [4, Theorem 5.3]. Recall that a saturated hereditary subset of E0 is a subset whose
complement satisfies axioms (T1) and (T2) of a maximal tail.

Lemma 3.1 ([2, Lemma 4.1]). Let E be a row-finite graph with no sources. If I is a
primitive ideal of C∗(E), then T:= {v∈ E0 : pv 6∈ I} is a maximal tail of E.
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Proof. The set ofv∈E0 such thatpv∈ I is a saturated hereditary set by [13, Lemma 4.5]
(see also [3, Lemma 4.2]). So its complementT satisfies (T1) and (T2). To estab-
lish (T3), fix v,w∈ T. Take an irreducible representationπ : C∗(E)→ B(H ) such that
ker(π) = I . Sincev ∈ T, we havepv 6∈ I , and soπ(pv)H 6= {0}. Fix ξ ∈ π(pv)H
with ‖ξ‖ = 1. Since pw 6∈ I , the spaceπ(pw)H is also a nontrivial subspace of
H . Sinceπ is irreducible,ξ is cyclic for π , and so there existsa ∈ C∗(E) such that
π(pw)π(a)ξ = π(pwapv)ξ is nonzero. In particular, we haveπ(pwapv) 6= 0. Since
C∗(E) = span{sµs∗ν : s(µ) = s(ν)}, and sincepwsµs∗ν pv 6= 0 only if r(µ) = w and
r(ν) = v, we have

π(pwapv) ∈ span{π(sµs∗ν) : r(µ) = w, r(ν) = v,s(µ) = s(ν)}\{0}.

So there existµ,ν ∈ E with r(µ) = w, r(ν) = v, s(µ) = s(ν), andπ(sµ ps(µ)s
∗
ν) =

π(sµs∗ν) 6= 0. In particular,π(ps(µ)) 6= 0, giving ps(µ) 6∈ I . So s(µ) ∈ T satisfies
wE∗s(µ),vE∗s(µ) 6= /0. �

Next we show how to recover a family of primitive ideals from the shift-tail equiva-
lence class of an infinite path.

Lemma 3.2. Let E be a row-finite directed graph with no sources. For x∈ E∞ and
z∈ T, there is an irreducible representationπx,z : C∗(E)→ B(ℓ2([x])) such that for all
y∈ [x], v∈ E0 and e∈ E1, we have

πx,z(pv)δy =

{

δy if r (y1) = v

0 otherwise
and πx,z(se)δy =

{

zδey if r (y1) = s(e)

0 otherwise.

We have{v∈ E0 : pv 6∈ ker(πx,z)}= [x]0.

Proof. It is easy to check thatℓ2([x]) is an invariant subspace ofℓ2(E∞) for the infinite-
path space representation of [13, Example 10.2] (withk= 1). So the infinite-path space
representation reduces to a representation onB(ℓ2([x])). Precomposing with the gauge
automorphismγz : se 7→ zse of [13, Proposition 2.1] yields a representationπx,z satisfying
the desired formula.

To see thatπx,z is irreducible, first observe that for eachx, the rank-1 projectionθx,x
ontoCδx is equal to the strong limit

θx,x = lim
n→∞

πx,z(sx1···xns
∗
x1···xn

).

If y,z∈ [x], theny= µw andz= νw for someµ,ν ∈ E∗ andw∈ [x]. Thus the rank-1
operatorθy,z fromCδz toCδy is in the strong closure of the image ofπx,z:

θy,z= z|ν|−|µ|πx,z(sµ)θw,wπx,z(s
∗
ν) = lim

n→∞
πx,z(z

|ν|−|µ|sµw1···wns
∗
νw1···wn

).

SoK (ℓ2([x])) is contained in the strong closure ofπx,z(C∗(E)). Thusπx,z is irreducible.
If v 6∈ [x]0, thenv 6= r(y1) for any y ∈ [x], and so the formula forπx,z shows that

pv ∈ ker(πx,z). On the other hand, ifv∈ [x]0, then we can findy∈ [x] with r(y1) = v,
and thenπx,z(pv)δy = δy 6= 0. �
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Next we want to know when two of the irreducible representations constructed as in
Lemma 3.2 have the same kernel. For the following, recall that if H ⊆ E0 is a hereditary
set (i.e.,E0 \H satisfies axiom (T1) of a maximal tail.), thenE \EH is the subgraph
of E with verticesE0 \H and edgesE1 \E1H. Note that ifT is a maximal tail, then
H := E0\T is a saturated hereditary set, and thenE \EH = ET.

Proposition 3.3.Let E be a row-finite graph with no sources. Fix x,y∈E∞ and w,z∈T.
The irreducible representationsπx,w andπy,z have the same kernel if and only if[x]0 =

[y]0 and wPer([x]0) = zPer([x]0).

The crux of the proof of Proposition 3.3 is Lemma 3.5, which westate separately
because it is needed again later to prove that every primitive ideal is of the formIπ,z.
Our proof of Lemma 3.5 in turn relies on the following standard fact about kernels of ir-
reducible representations; we thank the anonymous refereefor suggesting the following
elementary proof.

Lemma 3.4. Let A be a C∗-algebra, let J be an ideal of A, and letπ1 and π2 be irre-
ducible representations of A that do not vanish on J. Thenker(π1) = ker(π2) if and only
if ker(π1)∩J = ker(π2)∩J.

Proof. The “ =⇒ ” direction is obvious. Suppose that ker(π1)∩ J = ker(π2)∩ J. By
symmetry, it suffices to show that ker(π1)⊆ ker(π2). Sinceπ2 is irreducible, ker(π2) is
primitive, and hence prime (see, for example, [12, Proposition 3.13.10]). By assump-
tion, we have ker(π1)∩ J = ker(π2)∩ J ⊆ ker(π2). Sinceπ2 does not vanish onJ, we
haveJ 6⊆ ker(π2). So primeness of ker(π2) forces ker(π1)⊆ ker(π2). �

Lemma 3.5. Let E be a row-finite graph with no sources, and suppose that T is a
maximal tail of E. Let H:= E0\T.

(1) Suppose that T is an aperiodic tail andπ is an irreducible representation of
C∗(E) such that{v∈ E0 : π(pv) 6= 0} = T. Thenkerπ is generated as an ideal
by{pv : v∈ H}.

(2) Suppose that T is a cyclic tail and thatµ is a cycle with no entrance in T . Suppose
that π1 andπ2 are irreducible representations of C∗(E) such that

{v : π1(pv) 6= 0}= T = {v : π2(pv) 6= 0}.

Then eachπi restricts to a 1-dimensional representation of C∗(sµ), andkerπ1 =
kerπ2 if and only ifπ1(sµ) = π2(sµ) as complex numbers. Eachkerπi is gener-
ated as an ideal by{pv : v∈ H}∪{πi(sµ)pr(µ)−sµ}.

Proof. We start with some setup that is needed for both statements. Let I be the ideal
of C∗(E) generated by{pv : v ∈ H}. This H is a saturated hereditary set. Ifπ is an
irreducible representation such that{v∈E0 : π(pv) 6=0}=T, thenI is contained in kerπ
by definition. By [13, Remark 4.12], there is an isomorphismC∗(E)/I ∼= C∗(E \EH)
that carriespv+ I to pv for v∈ E0 \H. SinceI ⊆ kerπ , the representationπ descends
to an irreducible representation ofC∗(E)/I , and hence determines a representationπ̃ of
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C∗(E \EH) such that
π̃(pv) = π(pv) for v∈ E0\H.

Now, for (1), if T is an aperiodic maximal tail, andπ is as above, then every cycle in
E\H has an entrance inE\H, andπ̃ is a representation ofC∗(E\EH) such that̃π(pv) 6=
0 for all v∈ (E \EH)0. So the Cuntz–Krieger uniqueness theorem [13, Theorem 2.4]
implies thatπ̃ is faithful. Hence kerπ = I , proving (1).

For (2), consider the idealJ of C∗(E \EH) generated bypr(µ). Thenπ̃i(J) 6= {0}
for i = 1,2. So Lemma 3.4 implies that̃π1 and π̃2 have the same kernel if and only
if ker(π̃1) ∩ J = ker(π̃2) ∩ J. SinceJ is generated as an ideal bypr(µ), the corner
pr(µ)Jpr(µ) = span{sµns∗µm : m,n∈ N} is full in J. Rieffel induction from aC∗-algebra
to a full corner is implemented by restriction of representations [14, Proposition 3.24].
Since Rieffel induction carries irreducible representations to irreducible representations
and induces a bijection between primitive-ideal spaces, wededuce that each̃πi is an
irreducible representation ofC∗(sµ)⊆ J, and that

kerπ̃1 = kerπ̃2 ⇐⇒ ker(π̃1)∩ pr(µ)Jpr(µ) = ker(π̃2)∩ pr(µ)Jpr(µ).

Sinceµ has no entrance,sµ is a unitary element ofpr(µ)Jpr(µ), soC∗(sµ)∼=C(σ(sµ)).
Since the irreducible representations of a commutativeC∗-algebra are 1-dimensional,
we deduce that each̃πi is a 1-dimensional representation ofC∗(sµ) ⊆ C∗(E \EH) and
hence eachπi is a 1-dimensional representation ofC∗(sµ) ⊆C∗(E). Moreover,π̃1 and
π̃2 have the same kernel if and only if they are implemented by evaluation at the same
pointz in σ(sµ), and hence if and only ifπ1(sµ) = π2(sµ).

For the final statement fixi ∈ {1,2}. SinceI is contained in the idealJ′ generated by
{pv : v∈ H}∪{πi(sµ)pr(µ)−sµ}, we haveJ′ = kerπi if and only if kerπ̃i is equal to the
imageJ′′ of J′/I in C∗(E \EH). Since Rieffel induction induces a bijection on ideal-
spaces, ker̃πi = J′′ if and only if pr(µ) kerπ̃i pr(µ) = pr(µ)J

′′pr(µ). Both of these ideals
coincide with the maximal ideal corresponding to the complex numberπi(sµ) ∈ σ(sµ),
so we are done. �

Proof of Proposition 3.3.The final statement of Lemma 3.2 implies that if kerπx,w =
kerπy,z, then[x]0 = [y]0. So it suffices to prove that if[x]0 = [y]0, then

(1) kerπx,w = kerπy,z if and only if wPer([x]0) = zPer([x]0).

For this we consider two cases. First suppose that[x]0 is an aperiodic maximal tail.
Then Lemma 3.5(1) implies that each of kerπx,w and kerπy,z is generated by{pv : v 6∈T},

and in particular the two are equal. Also,wPer([x]0) = w0 = 1 = z0 = zPer([x]0), so the
equivalence (1) holds.

Now suppose that[x]0 is cyclic, and letµ be a cycle with no entrance in[x]0. We
must show that ker̃πx,w = kerπ̃y,z if and only if w|µ| = z|µ|. Sinceµ has no entrance,
bothπx,w(pr(µ))ℓ

2([x]) andπy,z(pr(µ))ℓ
2([y]) are equal to the 1-dimensional spaceCδµ∞ ,

and we have

πx,w(sµ)δµ∞ = w|µ|δµ∞ and πy,z(sµ)δµ∞ = z|µ|δµ∞ .
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So, identifying the image ofπx,w(C∗(sµ)) with C, we haveπx,w(sµ) =w|µ| and similarly
πy,z(sµ) = z|µ|. So Lemma 3.5(2) shows that kerπx,w = kerπy,z if and only if z|µ| =
w|µ|. �

We are now ready to state and prove our first main result—a catalogue of the primitive
ideals ofC∗(E). Proposition 3.3 says that the following definition makes sense.

Definition 3.6. Let E be a row-finite directed graph with no sources. Suppose thatT is
a maximal tail inE0 and thatz∈ {wPer(T) : w∈ T} ⊆ T. We define

IT,z := kerπx,w for any(x,w) ∈ E∞ ×T such that[x]0 = T andwPer(T) = z.

Theorem 3.7.The map(T,z) 7→ IT,z is a bijection from

{(T,wPer(T)) : T is a maximal tail, w∈ T}

to PrimC∗(E).

Proof. Lemma 3.2 shows that eachIT,z is a primitive ideal. Proposition 3.3 shows that
(T,z) 7→ IT,z is injective. So we just have to show that it is surjective. Fix a primitive
idealJ of C∗(E), letT = {v : pv 6∈ J}, and letπ be an irreducible representation ofC∗(E)
with kernelJ. ThenT is a maximal tail according to Lemma 3.1. We must show thatJ
has the formIT,z.

If T is aperiodic, then Lemma 3.5(1) shows thatJ = kerπ = kerπx,1 = I[x]0,1 for any

x such that[x]0 = T.
If T is cyclic, let µ be a cycle with no entrance inT. Lemma 3.5(2) shows that

π(C∗(sµ)) is one-dimensional, so we can identifyπ(sµ) with a nonzero complex num-
berz. Sincesµ is an isometry,|z|= 1. Now Lemma 3.5(2) implies that anyw∈ T with
w|µ| = z satisfies kerπ = kerπ[µ∞]0,w = I[x]0,z. �

4. THE CLOSURE OPERATION

The Jacobson, or hull-kernel, topology on PrimC∗(E) is the one determined by the
closure operationX = {I ∈ PrimC∗(E) :

⋂

J∈X J ⊆ I}. The ideals ofC∗(E) are in bijec-
tion with the closed subsets of PrimC∗(E): the idealIX corresponding to a closed subset
X is

IX :=
⋂

J∈X J.

So the first step in describing the ideals ofC∗(E) is to say when a primitive ideal
I belongs to the closure of a setX of primitive ideals. We do so with the following
theorem.

Theorem 4.1.Let E be a row-finite graph with no sources. Let X be a set of pairs(T,z)
consisting of a maximal tail T and an element z of{wPer(T) : w∈ T}. Consider another
such pair(S,w). Then

⋂

(T,z)∈X IT,z⊆ IS,w if and only if both of the following hold:

a) S⊆
⋃

(T,z)∈X T, and
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b) if S is a cyclic tail and the cycleµ with no entrance in S also has no entrance in
⋃

(T,z)∈X T, then

w∈ {z : (S,z) ∈ X}.

We will need the following simple lemma in the proof Theorem 4.1, and at a number
of other points later in the paper.

Lemma 4.2.Let E be a row-finite graph with no sources, let H be a saturatedhereditary
subset of C∗(E) and letµ be a cycle with no entrance in E0 \H. Let IH be the ideal of
C∗(E) generated by{pv : v∈ H}. Then there is an isomorphism

(pr(µ)C
∗(E)pr(µ))/(pr(µ)IH pr(µ))

∼= pr(µ)C
∗(E \EH)pr(µ)

carrying sµ + pr(µ)IH pr(µ) to sµ , and there is an isomorphism of pr(µ)C
∗(E \EH)pr(µ)

onto C(T) carrying sµ to the generating monomial function z7→ z.

Proof. Remark 4.12 of [13] shows that there is an isomorphismC∗(E)/IH ∼=C∗(E\EH)
that carriesse+ IH to se if e∈ E1 \E1H and to zero otherwise. This restricts to the de-
sired isomorphismpr(µ)C

∗(E)pr(µ)/pr(µ)IH pr(µ)
∼= pr(µ)C

∗(E\EH)pr(µ). The element
sµ ∈ pr(µ)C

∗(E \EH)pr(µ) satisfiess∗µsµ = pr(µ) = sµs∗µ becauseµ has no entrance in
E0\H. So it suffices to show that the spectrum ofsµ calculated inpr(µ)C

∗(E\EH)pr(µ)
is T. To see this, observe that the gauge actionγ satisfiesγw(sµ) = w|µ|(sµ). So for
λ ,w∈ T, λ pr(µ)−sµ is invertible if and only ifγw(λ pr(µ)−sµ) = w|µ|(w−|µ|λ pr(µ)−

sµ). That is,σ(µ) is invariant under rotation by elements of the formw|µ|, which is all
of T. Since the spectrum is nonempty, it follows that it is the whole circle. �

Proof of Theorem 4.1.We first prove the “if” direction. So suppose that (a) and (b)
are satisfied. We consider two cases. First suppose thatS is an aperiodic tail. Then
Per(S) = {0}, and sow= 1. For each maximal tailT of E, let

T− := T \{v : v lies on a cycle with no entrance inT},

and letIT− be the ideal generated by{pv : v 6∈ T−}. If T is a cyclic maximal tail andµ
is a cycle with no entrance inT, and ifz∈ {wPer(T) : w∈ T}, then Lemma 3.5(2) shows
that IT,z is generated by{pv : v 6∈ T}∪ {zpr(µ)− sµ}. So IT,z ⊆ IT−. So it suffices to
show that

⋂

(T,z)∈X IT− ⊆ IS,1.

For this it suffices to show that
⋃

(T,z)∈X T− ⊇ S. We fix v∈ E0 \
⋃

(T,z)∈X T− and show
that v 6∈ S. If v 6∈ T for all (T,z) ∈ X, then it follows from (a) thatv 6∈ S. So we may
assume thatv∈

(

⋃

(T,z)∈X T
)

\
(

⋃

(T,Z)∈X T−
)

. In particular, there exist pairs(T,z) ∈ X
such thatv ∈ T. Fix any such pair. Sincev 6∈ T−, it must lie in a cycleµ in T with
no entrance inT. Property (T1) shows thatµ is contained entirely inT, and then
Lemma 2.2 then givesT = [µ∞]0= r(E∗v). Soµ has no entrance inr(E∗v), and the only
pairs(T,z) ∈ X with v∈ T satisfyT = r(E∗v). Thusµ has no entrance in

⋃

(T,z)∈X T.
SinceS⊆

⋃

(T,z)∈X T, and every cycle inShas an entrance inS, we deduce thatµ does
not lie inSand hencev 6∈ Sas required.
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Now suppose thatS is cyclic andµ is a cycle with no entrance inS. LetV be the set
of vertices onµ. Lemma 2.2 givesS= {r(α) : s(α) ∈V}. SinceS⊆

⋃

(T,z)∈X T, there
exists(T,z) ∈ X with r(µ) ∈ T. SinceT satisfies (T1), we deduce that the cycleµ lies
in the subgraphET of E. So there exists(T,z) ∈ X such thatV ⊆ T, and thenS⊆ T
becauseS= {r(α) : s(α) ∈V} andT satisfies (T1). So it suffices to show that

⋂

(T,z)∈X,S⊆T IT,z⊆ IS,ω .

For this, first suppose that there exists(T,z) ∈ X such thatT is a proper superset ofS;
sayv∈ T \S. SinceS= {r(α) : s(α) ∈V}, we see thatvE∗V = /0, and hencevE∗S= /0.
So there existsw∈ T \Ssuch thatVE∗w andvE∗w are both nonempty. Hence

T ⊇ {r(α) : s(α) = w} ⊇ {r(α) : s(α) ∈V}= S.

If T is a cyclic tail, the cycle with no entrance that it contains lies outside ofS, so the
final statement of Lemma 3.5(2) shows that all the generatorsof IT,z belong toIS,w; and
if T is aperiodic, then all the generators ofIT,z belong toIS,w by Lemma 3.5(1). In either
case, we conclude thatIT,z ⊆ IS,w, and hence

⋂

(T,z)∈X,S⊆T IT,z⊆ IS,ω .
So it now suffices to show that

⋂

z:(S,z)∈X IS,z ⊆ IS,w. Let IS be the ideal generated by
{pv : v 6∈ S}. Then eachIS,z containsIS, as doesIS,w, so we need only show that in the
quotientC∗(E)/IS∼=C∗(ES), the intersection of the imagesJz of theIS,z is contained in
Jw. EachJz is generated byzpr(µ)−sµ and is therefore contained in the ideal generated
by pr(µ), and similarly forJw. Since the ideal generated bypr(µ) is Morita equiva-
lent to the corner determined bypr(µ), it suffices to show that

⋂

(S,z)∈X pr(µ)Jzpr(µ) ⊆

pr(µ)Jwpr(µ). The isomorphismpr(µ)C
∗(ES)pr(µ)

∼= C(T) of Lemma 4.2 carries each
pr(µ)Jzpr(µ) to { f ∈C(T) : f (z) = 0}. So

⋂

(S,z)∈X pr(µ)Jzpr(µ) is carried to
{

f ∈C(T) :

f ≡ 0 on{z : (S,z) ∈ X}
}

, and in particular is contained in the image ofpr(µ)Jwpr(µ).
We now prove the “only if” direction. To do this, we prove the contrapositive. So we

first suppose that (a) does not hold. Then there is somev ∈ S\
⋃

(T,z)T. This implies
that pv ∈ I(T,z) for all (T,z), but pv 6∈ IS,w, and so

⋂

(T,z) IT,zi 6⊆ IS,w as required.
Now suppose thatS⊆

⋃

(T,z)T, that µ is a cycle with no entrance inS and thatµ
also has no entrance in

⋃

(T,z)∈X T, and thatw 6∈ {z : (S,z) ∈ X}. As above,S= {r(α) :
s(α) = r(µ)}, and sinceµ has no entrance in anyT, for each(T,z)we have eitherT =S
or r(µ) 6∈ T. Wheneverr(µ) 6∈ T, we havepr(µ) ∈ I(T,z), and so

⋂

(T,z) pr(µ)IT,zpr(µ) =
⋂

(S,z)∈X pr(µ)IS,zpr(µ). Once again taking quotients byIS, it suffices to show that

⋂

(S,z)∈X

pr(µ)Jzpr(µ) 6⊆ pr(µ)Jwpr(µ).

Sincew 6∈ {z : (S,z) ∈ X}, there existsf ∈C(T) such thatf (w) = 0 and f (z) = 1 when-
ever(S,z) ∈ X. Let g= 1− f ∈C(T). Then the images of the elementsf andg belong
to

⋂

(S,z)∈X pr(µ)Jzpr(µ) andpr(µ)Jwpr(µ) respectively. Their sum is the identity element
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pr(µ), which does not belong toJw. Thus

pr(µ)Jwpr(µ)+
⋂

(S,z)∈X

pr(µ)Jzpr(µ) 6= Jw.

Consequently,
⋂

(S,z)∈X pr(µ)Jzpr(µ) 6⊆ pr(µ)Jwpr(µ). �

5. THE IDEALS OFC∗(E)

We use Theorem 4.1 above to describe all the ideals ofC∗(E). We index them by
what we call ideal pairs forE. To define these, given a saturated hereditary setH of E0,
we will write C (H) for the set

C (H) := {µ : µ is a cycle with no entrance inE0\H}.

An ideal pair for E is then a pair(H,U)whereH is a saturated hereditary set, andU is a
function assigning to eachµ ∈C (H) a proper open subsetU(µ) of T, with the property
thatU(µ) =U(ν) whenever[µ∞] = [ν∞].

Observe that if the maximal tailE0\H is aperiodic, so thatC (H) = /0, then there is
exactly one ideal pair of the form(H,U): the functionU is the unique (trivial) function
from the empty set to the collection of proper open subsets ofT.

To see how to obtain an ideal ofC∗(E) from an ideal pair, we need to do a little bit of
background work.

For each open subsetU ⊆ T, we fix a functionhU ∈C(T) such that

{z∈ T : hU(z) 6= 0}=U.

For example, we could take

hU(z) := inf{|z−w| : w /∈U}.

Let π : C(T)→ ℓ2(Z) be the faithful representation that carries the generatingmono-
mial z 7→ z to the bilateral shift operatorU : en 7→ en+1. The classical theory of Toeplitz
operators says that ifP+ : ℓ2(Z) → ℓ2(N) denotes the orthogonal projection onto the
Hardy spacespan{en : n ≥ 0}, then there is an isomorphismρ from P+π(C(T))P+ to
the Toeplitz algebraT ⊆ ℓ2(N) generated by the unilateral shift operatorS, such that if
q : T →C(T) is the quotient map that divides out the ideal of compact operators, then
q(ρ(P+π( f )P+)) = f for every f ∈C(T).

If H ⊆ E0 is saturated and hereditary, then for eachµ ∈ C (H), we havesµs∗µ ≤

pr(µ) = s∗µsµ , with equality precisely ifµ has no entrance inE0. So if µ has no entrance
in E0, thensµ is unitary in pr(µ)C

∗(E)pr(µ), and we can apply the functional calculus
in the corner to define a nonzero elementhU(sµ) ∈C∗(E). If µ has an entrance inE0,
thensµs∗µ < s∗µsµ , so Coburn’s theorem [5] gives an isomorphismψ : T ∼=C∗(sµ) that
carriesS to sµ .
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Using the preceding paragraph, given an ideal pair(H,U) and givenµ ∈ C (H), we
obtain an elementτU

µ ∈C∗(sµ)⊆ pr(µ)C
∗(E)pr(µ) given by

τU
µ :=

{

hU(µ)(sµ) if µ has no entrance inE0

ψ(ρ(P+π(hU(µ))P+)) otherwise.

Theorem 5.1.Let E be a row-finite graph with no sources. LetIE denote the set of all
ideal pairs for E. For each(H,U) ∈ IE, let JH,U be the ideal of C∗(E) generated by

{pv : v∈ H}∪{τU
µ : µ ∈ C (H)}.

(1) The map(H,U) 7→ JH,U is a bijection ofIE onto the collection of all closed
2-sided ideals of C∗(E).

(2) Given an ideal I of C∗(E), let HI := {v ∈ E0 : pv ∈ I}, and for µ ∈ C (HI), let
UI (µ) = T \ spec(pr(µ)+I)(C∗(E)/I)(pr(µ)+I)(sµ + I). Then(HI ,UI) is an ideal pair
and I= JHI ,UI .

Before proving the theorem, we need the following lemma.

Lemma 5.2. Let E be a row-finite directed graph with no sources. Let(H,U) be an
ideal pair for E, let T be a maximal tail of E and take z∈ {wPer(T) : w ∈ T}. Then
JH,U ⊆ IT,z if and only if both of the following hold:

a) H ⊆ E0\T; and
b) if T is cyclic and the cycleµ with no entrance in T belongs toC (H), then z6∈

U(µ).
In particular, we have{v : pv ∈ JH,U}= H.

Proof. For the “if” direction, fixx∈E∞ such thatT = [x]0 andw∈T such thatwPer(T) =
z. We just have to show thatπx,w annihilates all the generators ofJH,U . For this, first fix
v∈ H. Then the final statement of Lemma 3.2 shows thatpv ∈ kerπx,w. Now fix µ ∈
C (H). If r(µ) 6∈ T, thenπx,w(pr(µ)) = 0 as above and then sinceτU

µ ∈ pr(µ)C
∗(E)pr(µ),

it follows that πx,w(τU
µ ) = 0. So suppose thatr(µ) ∈ T. Sinceµ has no entrance in

E0\H and sinceT ⊆ E0\H, the cycleµ has no entrance inT. SoT is a cyclic maximal
tail, and[x]0= [µ∞]0 by Lemma 2.2. We then havez 6∈U(µ) by hypothesis. The idealIH
generated by{pv : v∈ H} is contained in ker(πx,w), soπx,w descends to a representation
π̃x,w of C∗(E)/IH. Lemma 4.2 shows thatpr(µ)C

∗(E)pr(µ)/pr(µ)I pr(µ)
∼= C(T), and

this isomorphism carries the restriction ofπ̃x,w to the 1-dimensional representationεz

given by evaluation atz. The isomorphism of Lemma 4.2 also carriesτU
µ + pr(µ)I pr(µ)

to hU(µ). Sincez 6∈ U(µ), we haveεz(hU(µ)) = 0, and soπx,w(τU
µ ) = 0. So all of the

generators ofJH,U belong to kerπx,w as required.
For the “only if” implication, we prove the contrapositive.Again fix x ∈ E∞ such

thatT = [x]0 andw∈ T such thatwPer(T) = z, so thatIT,z = kerπx,w. First suppose that
H 6⊆ E0\T; sayv∈ T ∩H. Thenpv ∈ JH,U by definition, butpv 6∈ kerπx,w by the final
statement of Lemma 3.2, givingJH,U 6⊆ kerπx,w. Now suppose thatH ⊆ E0\T, thatT
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is cyclic and that the cycleµ with no entrance inT belongs toC (H), but thatz∈U(µ).
Arguing as in the preceding paragraph, we see thatπx,w(hU(µ)(z)pr(µ)−τU

µ ) = 0. Since
τU

µ ∈ JH,U , we deduce thatpr(µ) ∈ JH,U +kerπx,w. Sincepr(µ) 6∈ kerπx,w by Lemma 3.2,
we deduce thatJH,U 6⊆ kerπx,w.

For the final statement, observe thatH ⊆{v : pv ∈ JH,U} by definition. For the reverse
containment, recall that by definition of an ideal pair, eachU(µ) is a proper subset of
T. So for eachµ ∈ C (H), we can choosezµ ∈ T\U(µ). By the preceding paragraphs,
we haveJH,U ⊆ I[µ]0,zµ for eachµ ∈ C (H). For eachv∈ E0 \H that does not belong

to [µ∞]0 for anyµ ∈ C (H), we can choose an infinite pathxv in E0\H with r(xv
1) = v.

Thisxv 6∈ [µ∞] for µ ∈ C (H) becausev does not belong to any[µ∞]0. So each[xv]0 is a
maximal tail contained in the complement ofH and the preceding paragraphs show that
JH,U ⊆ I[xv]0,1. We now have

JH,U ⊆
(

⋂

µ I[µ]0,zµ

)

∩
(

⋂

v I[xv]0,1

)

.

By construction, the right-hand side does not containpv for anyv 6∈H, and so we deduce
thatv 6∈ H impliespv 6∈ JH,U as required. �

Proof of Theorem 5.1.To prove the theorem, it suffices to show that the assignment
(H,U) 7→ JH,U is injective, and then prove statement (2).

The general theory ofC∗-algebras says that every ideal of aC∗-algebraA is equal to
the intersection of all of the primitive ideals that containit. By definition, the topology
on Prim(A) is the weakest one in which{I ∈ Prim(A) : J ⊆ I} is closed for every ideal
J of A, and the map which sendsJ to this closed subset of Prim(A) is a bijection.
So to prove that(H,U) 7→ JH,U is injective, we just have to show that the closed sets
YH,U := {I ∈ PrimC∗(E) : JH,U ⊆ I} are distinct for distinct pairs(H,U).

By Lemma 5.2, we have

YH,U = {IT,z : T ⊆ E0\H is a maximal tail, and

if T is cyclic and the cycleµ with no entrance inT

also has no entrance inH, thenz 6∈U(µ)}.

Suppose that(H1,U1) and (H2,U2) are distinct ideal pairs ofE. We consider two
cases. First suppose thatH1 6= H2. Without loss of generality, there existsv∈ H1\H2.
SinceH2 is saturated, there existse1 ∈ vE1 such thats(e1) 6∈ H2. SinceH1 is hereditary,
we haves(e)∈ H1. Repeating this argument we obtain edgesei ∈ s(ei−1)E1 with s(ei)∈
H1 \H2, and hence an infinite pathx lying in (E \EH1) \ (E \EH2). Now [x]0 is a
maximal tail contained inH1 \H2. If [x]0 is an aperiodic tail or is a cyclic tail such
that the cycle with no entrance in[x]0 has an entrance inE \EH2, we setz= 1. If
[x]0 = [µ∞]0 for someµ ∈ C (H2), we choose anyz∈ T \U2(µ). Then Lemma 5.2
shows thatI[x]0,z∈YH2,U2 \YH1,U1.

Now suppose thatH1 = H2. ThenU1 6=U2, so we can findµ ∈ C (H1) = C (H2) such
thatU1(µ) 6=U2(µ). Again without loss of generality, we can assume that there exists



IDEALS OF GRAPH ALGEBRAS 14

z∈U1(µ)\U2(µ), and then we haveI[µ∞]0,z∈YH2,U2 \YH1,U1. This completes the proof
that theYH,U are distinct.

It remains to prove (2). Given an idealI , the setH := HI is a saturated hereditary
set by [13, Lemma 4.5]. Since the idealIH generated by{pv : v ∈ H} is contained
in I , Lemma 4.2 shows thatsµ + I is unitary in(pr(µ)+ I)C∗(E)/I(pr(µ)+ I) for each
µ ∈C(H); so its spectrum is a closed subset ofT, showing thatUI (µ) is an open subset
of T. If µ,ν ∈ C(H) with [µ∞] = [ν∞], thenµ∞ = αν∞ for some initial segmentα of
µ∞. The Cuntz–Krieger relations show thats∗αsµsα + I = sν + I andsαsνs∗α + I = sµ + I ;
so conjugation bysα + I gives an isomorphismC∗(sµ)+ I ∼=C∗(sν)+ I , and in particular

spec(pr(µ)+I)(C∗(E)/I)(pr(µ)+I)(sµ + I) = spec(pr(ν)+I)(C∗(E)/I)(pr(ν)+I)(sν + I),

givingUI(µ) =UI(ν). So(H,U) is an ideal pair.
To see thatI = JHI ,UI , we first check the containment⊇. For this, it suffices to show

that every generator ofJHI ,UI belongs toI . We havepv ∈ I for all v∈ HI by definition.
Fix µ ∈ C (HI); we must show thatτUI

µ ∈ I . For this, letIH be the ideal ofC∗(E) gener-
ated by{pv : v∈ H}. SinceIH is contained in bothI andJHI ,UI we just have to show that
JHI ,UI/IH is contained inI/IH. For this, letπ : pr(µ)C

∗(E)pr(µ) →C(T) be the composi-
tion of the isomorphism of Lemma 4.2 with the canonical surjection pr(µ)C

∗(E)pr(µ) →

(pr(µ)+ IH)(C∗(E)/IH)(pr(µ)+ IH). Thenπ(τUI
µ )=hUI (µ) vanishes onT\UI (µ), which

is spec(pr(µ)+I)(C∗(E)/I)(pr(µ)+I)(sµ + I). Since the quotient map by the image ofI under

π is given by restriction of functions to spec(pr(µ)+I)(C∗(E)/I)(pr(µ)+I)(sµ + I), it follows

thatτUI
µ + IH ∈ I/IH as required.

For the reverse containment, recall that every ideal ofC∗(E) is the intersection of the
primitive ideals that contain it, so it suffices to show that if IS,w ∈ YHI ,UI , thenI ⊆ IS,w.
Fix IS,w ∈YHI ,UI . We can expressI as an intersection of primitive ideals and therefore, by
Theorem 3.7, we haveI =

⋂

(T,z)∈X IT,z for some setX of pairs consisting of a maximal

tail T and an elementz∈ {uPer(T) : u∈ T}. We then have

v∈ HI ⇐⇒ pv ∈ I ⇐⇒ pv ∈
⋂

(T,z)∈X IT,z ⇐⇒ v∈
⋂

(T,z)∈X E0\T,

and we deduce thatHI = E0 \
⋃

(T,z)∈X T. SinceIS,w ∈ YHI ,UI , we haveS⊆ E0 \HI =
⋃

(T,z)∈X T. So if S is an aperiodic tail, or is a cyclic tail such that the cycleµ with
no entrance inS has an entrance in

⋃

(T,z)∈X T, then Theorem 4.1 immediately gives
I =

⋂

(T,z)∈X IT,z⊆ IS,w. So suppose thatS is cyclic, and the cycleµ with no entrance in
Shas no entrance in

⋃

(T,z)∈X T. Again using thatIS,w ∈YHI ,UI , we see thatw 6∈UI(µ).
Hencew ∈ spec(pr(µ)+I)(C∗(E)/I)(pr(µ)+I)(sµ + I). So if π : pr(µ)C

∗(E)pr(µ) → C(T) is

the map described in the preceding paragraph, we havef (w) = 0 for all f in π(I) =
⋂

(S,z)∈X π(IS,z). Eachπ(IS,z) is the set of functions that vanishes atz, so we deduce
that every function vanishing at everyz for which (S,z) ∈ X also vanishes atw; that is
w∈ {z : (S,z) ∈ X}. Now Theorem 4.1 again givesI =

⋂

(T,z)∈X IT,z ⊆ IS,w. �
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Remark 5.3. To see where the primitive ideals ofC∗(E) fit into the catalogue of Theo-
rem 5.1, first let us establish the convention that ifC (H) = /0, then /0 denotes the unique
(trivial) function fromC (H) to the collection of open subsets ofT, and that ifC (H) is
a singleton, then ˇz denotes the function onC (H) that assigns the valueT \ {z} to the
unique element ofC (H). Now if T is a maximal tail andz∈ {wPer(T) : w ∈ T}, then
Lemma 3.5 and the definition of the idealsJH,U show that

IT,z=

{

JE0\T, /0 if T is aperiodic

JE0\T,ž if T is cyclic.

Remark 5.4. The idealJH,U is gauge invariant (i.e.,γz(JH,U) = JH,U for everyz∈ T) if
and only ifU(µ) = /0 for everyµ ∈ C (H), in which caseJH,U = IH . Thus, we recover
from Theorem 5.1 the description of the gauge invariant ideals of C∗(E) presented in
[2, Theorem 4.1].

6. THE LATTICE STRUCTURE

To finish off the description of the lattice of ideals ofC∗(E), we describe the complete-
lattice structure in terms of ideal pairs.

We define� on the setIE of ideal pairs for a row-finite graphE with no sources by

(H1,U1)� (H2,U2) ⇐⇒ H1 ⊆ H2 andU1(µ)⊆U2(µ)
for all µ ∈ C (H1)∩C (H2).

In the following, givenX ⊆ T, we write Int(X) for the interior ofX.

Theorem 6.1.Let E be a row-finite graph with no sources.

(1) Given ideal pairs(H1,U1) and(H2,U2) for E, we have JH1,U1 ⊆ JH2,U2 if and only
if (H1,U1)� (H2,U2).

(2) Given a set K⊆ IE of ideal pairs for E, we have
⋂

(H,U)∈K JH,U = JHK ,UK where
HK =

⋂

(H,U)∈K H, and UK(µ) = Int
(

⋂

(H,U)∈K,µ∈C (H)U(µ)
)

.
(3) Fix a set K⊆ IE of ideal pairs of E. Let A be the saturated hereditary closure

of
⋃

(H,U)∈K H. Let B= {r(µ) : µ ∈ C (A) and
⋃

(H,U)∈K,µ∈C (H)U(µ) = T}. Let

HK be the saturated hereditary closure of A∪B in E0, and for eachµ ∈ C (HK),
let UK(µ) =

⋃

(H,U)∈K,µ∈C (H)U(µ). Thenspan
(

⋃

(H,U)∈K JH,U
)

= JHK ,UK .

Proof. (1): First suppose that(H1,U1) � (H2,U2). We show that every generator of
JH1,U1 belongs toJH2,U2. For eachv∈H1 we havev∈ H2 and thereforepv ∈ JH2,U2. Sup-
pose thatµ ∈ C (H1). If r(µ) ∈ H2, thenpr(µ) ∈ JH2,U2 and soτU1

µ ∈ pr(µ)C
∗(E)pr(µ)

belongs toJH2,U2 as well. So we may suppose thatr(µ) 6∈ H2. SinceH1 ⊆ H2 and
sinceµ has no entrance inE0 \H1, it cannot have an entrance inE0 \H2, so it be-
longs toC (H2). The idealIH1 generated by{pv : v ∈ H1} is contained in bothJH1,U1

andJH2,U2. By Lemma 4.2, we have(pr(µ)+ IH1)(C
∗(E)/IH1)(pr(µ)+ IH1)

∼=C(T) and

this isomorphism carriesτU1
µ to hU1(µ) and carries the image ofJH2,U2 to { f ∈ C(T) :

f−1(C \ {0}) ⊆U2(µ)}. SinceU1(µ) ⊆ U2(µ), it follows that the image ofτU1
µ in the
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corner(pr(µ)+ IH1)(C
∗(E)/IH1)(pr(µ)+ IH1) belongs to the image ofJH2,U2, and there-

fore τU1
µ + IH1 ⊆ JH2,U2, giving τU1

µ ∈ JH2,U2.
Now suppose thatJH1,U1 ⊆ JH2,U2. The final statement of Lemma 5.2 shows that

H1⊆H2, so we must show that wheneverµ ∈C (H1)∩C (H2), we haveU1(µ)⊆U2(µ).
Theorem 5.1 (2) shows that

Ui(µ) = T\spec(pr(µ)+JHi ,Ui )(C
∗(E)/JHi ,Ui )(pr(µ)+JHi ,Ui )

(sµ +JHi ,Ui ).

SinceJH1,U1 ⊆ JH2,U2, there is a homomorphismq : C∗(E)/JH1,U1 → C∗(E)/JH2,U2 that
carriessµ +JH1,U1 to sµ +JH2,U2. In particular,q carriespr(µ)+JH1,U1 to pr(µ)+JH2,U2,
and so induces a unital homomorphism between the corners determined by these pro-
jections. Since unital homomorphisms decrease spectra, weobtain

spec(pr(µ)+JH2,U2)(C
∗(E)/JH2,U2)(pr(µ)+JH2,U2)

(sµ +JH2,U2)

⊆ spec(pr(µ)+JH1,U1)(C
∗(E)/JH1,U1)(pr(µ)+JH1,U1)

(sµ +JH1,U1),

and henceU1(µ) ⊆U2(µ).
(2): The ideal

⋂

(H,U)∈K JH,U is the largest ideal that is contained inJH,U for every
(H,U) in K. Since the map(H,U)→ JH,U is a bijection carrying� to ⊆, it suffices
to show that(HK,UK) � (H,U) for all (H,U) ∈ K, and is maximal with respect to
� amongst pairs(H ′′,U ′′) satisfying(H ′′,U ′′) � (H,U) for all (H,U) ∈ K. The pair
(HK,UK) satisfies(HK,UK) � (H,U) for all (H,U) ∈ K by definition ofHK andUK.
Suppose that(H ′′,U ′′)� (H,U). ThenH ′′ ⊆H for all (H,U)∈ K, and henceH ′′ ⊆HK;
and if µ ∈ C (H ′′)∩C (HK), and if(H,U)∈ K satisfiesµ ∈ C (H), thenU ′′(µ)⊆U(µ)
because(H ′′,U ′′)� (H,U). SoU ′′(µ) is an open subset of

⋂

(H,U)∈K,µ∈C (H)U(µ), and
therefore belongs to Int

(

⋂

(H,U)∈K,µ∈C (H)U(µ)
)

=UK.
(3): The idealspan

(

⋃

(H,U)∈K JH,U
)

is the smallest ideal containingJH,U for every
(H,U) in K. So as above it suffices to show that(H,U)� (HK,UK) for all (H,U)∈ K,
and that(HK,UK) is minimal with respect to� amongst pairs(H ′′,U ′′) satisfying
(H,U)� (H ′′,U ′′) for all (H,U) ∈ K. The pair(HK,UK) satisfies(H,U)� (HK,UK)
for all (H,U) ∈ K by construction. Suppose that(H ′′,U ′′) is another ideal pair satis-
fying (H,U) � (H ′′,U ′′) for all (H,U) ∈ K. We just have to show that(HK,UK) �
(H ′′,U ′′). We haveH ⊆ H ′′ for every (H,U) ∈ K, and sinceH ′′ is saturated and
hereditary, it follows thatA ⊆ H ′′. If v ∈ B, then there existsµ ∈ C (A) such that
⋃

(H,U)∈K,µ∈C (H)U(µ) = T, and then by compactness ofT, there are finitely many
pairs (H1,U1), . . . ,(Hn,Un) ∈ K such thatµ ∈ C (Hi) for each i, and

⋃n
i=1U(µ) =

T. Choose a partition of unity{ f1, . . . , fn} ∈ C(T) subordinate to theUi. Let IA be
the ideal ofC∗(E) generated by{pv : v ∈ A}. Then eachfi belongs to the image of
pr(µ)J(Hi ,Ui)pr(µ) under the isomorphism of Lemma 4.2, and so 1= ∑i fi belongs to the
image of∑n

i=1 pr(µ)JHi ,Ui pr(µ). Since each(Hi,Ui) � (H ′′,K′′), it follows that 1 be-
longs to the image ofJ(H ′′,K′′). But the preimage of 1 ispr(µ)+ IA, and we deduce that
pr(µ) ∈ J(H ′′,K′′). The final statement of Lemma 5.2 therefore implies thatv ∈ H ′′. So
A∪B ⊆ H ′′, and sinceH ′′ is saturated and hereditary, it follows thatHK ⊆ H ′′. Now
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suppose thatµ ∈ C (HK)∩C (H ′′). For eachz∈UK(µ), there exists(H,U) ∈ K such
that µ ∈ C (H) andz∈ U(µ). Since(H,U) � (H ′′,U ′′) andµ ∈ C (H ′′)∩C (H), we
deduce thatz∈ U ′′(µ). SoUK(µ) ⊆ U ′′(µ). So we have(HK,UK) � (H ′′,U ′′) as
required. �
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