
LECTURE NOTES ON HIGHER-RANK GRAPHS AND THEIR
C∗-ALGEBRAS

AIDAN SIMS

Abstract. These are notes for a short lecture course on k-graph C∗-algebras to be
delivered at the Summer School on C∗-algebras and their interplay with dynamics at
the Sophus Lie Conference Centre in Nordfjordeid, Norway in June 2010. They are not
even remotely comprehensive of the work that many authors have done on k-graphs,
nor are all details even of the material covered included. In addition, there are likely
to be plenty of typo’s and possibly more serious errors, and I would be grateful if you
could pass any you find on to me.

These notes are also not comprehensively referenced, though I have tried to attribute
major results and definitions to the people who proved them. There are many people
who have been involved in the area who have not been mentioned; I apologise for my
oversights.

I thank the organisers of the conference — Toke Carlsen, Magnus Landstad, and
Nadia Larsen — for organising an exceptionally interesting and enjoyable academic
program, and a very smooth-running and congenial meeting in general.

1. Higher-rank graphs, coloured graphs and skeletons

In these notes, a directed graph is a quadruple (E0, E1, r, s) where E0, E1 are count-
able (discrete) sets, and r, s are maps from E1 to E0. A path in E is a sequence α1 . . . αn
with each αi ∈ E1 and with s(αi) = r(αi+1) for all i. We write En for the collection of
paths of length n in E. We regard the set E∗ of all paths as a category with objects E0

and composition given by concatenation of paths.
Our convention is that N is the collection of natural numbers including 0, and we

write Nk for the abelian semigroup of k-tuples of natural numbers under coordinatewise
addition. The canonical generators of Nk are {e1, . . . , ek}, and we denote the ith coor-
dinate of n ∈ Nk by ni; so n = (n1, n2, . . . , nk). We give Nk the standard lattice order
so m ≤ n if mi ≤ ni for all i. For m,n ∈ Nk, we write m ∨ n for the coordinatewise
maximum of m and n and m ∧ n for the coordinatewise minimum of m and n.

Definition 1.1 ([11, Definitions 1.1]). Let k ∈ N. A graph of rank k or a k-graph is
a countable category Λ equipped with a functor d : Λ → Nk, called the degree functor
satisfying the following factorisation property:

for all λ ∈ Λ and m,n ∈ Nk such that d(λ) = m + n there are unique
elements µ ∈ d−1(m) and ν ∈ d−1(n) such that λ = µν.

Lemma 1.2. Let Λ be a k-graph. Then d−1(0) = {ido : o ∈ Obj(Λ)}.
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Proof. If o ∈ Obj(Λ), then

d(ido) = d(ido ido) = 2d(id0),

forcing d(ido) = 0. Thus {ido : o ∈ Obj(Λ)} ⊂ d−1(0).
For the reverse inclusion, fix λ with d(λ) = 0. We have d(λ) = 0 + 0, and

idcod(λ) λ = λ = λ iddom(λ) .

Uniqueness of factorisations therefore forces λ = iddom(λ). �

Notation 1.3. We will adopt the following notation throughout these notes.

• Λn := d−1(n).
• r(λ) := idcod(λ) ∈ Λ0 and s(λ) := iddom(λ) ∈ Λ0.
• For E ⊂ Λ and α ∈ Λ, we write αE := {αλ : λ ∈ E, r(λ) = s(α)}, and
Eα := {λα : λ ∈ E, s(λ) = r(α)}. In particular, for v ∈ Λ0 and n ∈ Nk,
vΛn = {λ ∈ Λ : r(λ) = v and d(λ) = n}.
• When m ≤ n ≤ l = d(λ), we write λ(0,m), λ(m,n) and λ(n, l) for the unique

paths of degree m, n−m and l − n such that λ = λ(0,m)λ(m,n)λ(n, l).

We describe k-graphs in terms of their k-coloured skeletons. Many of the results
in this section were originally proved by Robbie Hazlewood in his honours thesis, and
subsequently sharpened and expanded in [8].

Definition 1.4. Let k ∈ N. A k-coloured graph is a directed graph (E0, E1, r, s)
together with a colour map c : E1 → {1, . . . , k}.

Given a k-coloured graph E, we extend the colour map c to a functor c : E∗ → F+
k ;

so c(α) = c(α1)c(α2) . . . c(α|α|) for α ∈ E∗.

Example 1.5. Fix k ∈ N and m ∈ Nk. The coloured graph Ek,m has vertices E0
k,m =

{n ∈ Nk : n ≤ m}, and edges E1
k,m = {εni : n, n+ ei ∈ E0

k,m} with structure maps

r(εni ) = n, s(εni ) = n+ ei, and c(εni ) = i.

For example, E3,(3,2) could be drawn as follows:

E2,(3,2)

(0, 0)

(2, 1)

ε
(0,0)
1

ε
(2,1)
1

ε
(0,0)
2

ε
(2,1)
2

A graph morphism ϕ from a graph E to a graph F is a pair of maps ϕ0 : E0 → F 0 and
ϕ1 : E1 → F 1 such that r(ϕ1(e)) = ϕ0(r(e)) and s(ϕ1(e)) = ϕ0(s(e)) for all e ∈ E1. We
will often simply write ϕ for each of ϕ0 and ϕ1. A coloured-graph morphism between
k-coloured graphs is then a graph morphism which preserves colour.
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For distinct i, j ≤ k, an ij-square in a k-coloured graph E is a coloured-graph mor-
phism ϕ : Ek,ei+ej → E.

Definition 1.6. A complete and associative collection of squares for a k-coloured graph
E is a set C of squares in E such that

(1) for each ij-coloured path fg ∈ E2 there is a unique ϕ ∈ C such that ϕ(ε0
i ) = f

and ϕ(εeij ) = g; and
(2) if we write fg ∼ g′f ′ whenever there is a square ϕ such that

ϕ(ε0
i ) = f, ϕ(εeij ) = g, ϕ(ε0

j) = g′ and ϕ(ε
ej
i ) = f ′,

then if fgh is a tri-coloured path and

fg ∼ g1f1, f1h ∼ h1f2, g1h1 ∼ h2g2,

gh ∼ h1g1, fh1 ∼ h2f 1 and f 1g1 ∼ g2f 2,

then f2 = f 2, g2 = g2 and h2 = h2.

g1 g

g2

h2

h1 h

f

f1

f2

f

f1

f2

g1

g

g2

h2 h1

h

Given a k-coloured graph E and a coloured-graph morphism ϕ : Ek,m → E, we say
that an ij-square ψ in E occurs in ϕ if there exists n ∈ Nk such that n + ei + ej ≤ m
and

ϕ(εni ) = ψ(ε0
i ), ϕ(εn+ei

j ) = ψ(εeij ),

ϕ(εnj ) = ψ(ε0
j) and ϕ(ε

n+ej
i ) = ψ(ε

ej
i ).

If E is a k-coloured graph and C is a complete and associative collection of squares
in E, we say that a coloured-graph morphism ϕ : Ek,m → E is C-compatible if every
square which occurs in ϕ belongs to C.

The next three results first appeared in an honours thesis by Robbie Hazlewood
[?], and were subsequently reworked in [8]. The first of them is the key step in our
construction of a k-graph from a coloured graph.

Lemma 1.7. Let E be a k-coloured graph and let C be a complete and associative
collection of squares in E. Let π : F+

k → Nk be the homomorphism satisfying π(i) = ei.
Then for each path α = α1α2 . . . α|α| ∈ E, there is a unique C-compatible coloured-graph
morphism ϕ : Ek,π(c(α)) → E such that

(1.1) ϕ(ε
π(c(α1...αl))
c(αl+1) ) = αl+1 for all l < |α|.

Proof. We proceed by induction on |α|. If |α| = 0 then the assertion is trivial.
Now fix n ≥ 1 and suppose that there is a unique ϕ satisfying (1.1) whenever |α| <

n ∈ N, and fix α ∈ En. Let i := c(αn), and let m := π(c(α)).
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By the inductive hypothesis, there is a unique C-compatible coloured-graph morphism
ψ : Ek,m−ei → E which is traversed by α1 . . . αn−1. For each j ∈ {1, . . . , k} \ {i} such
that mj 6= 0, that C is a complete collection of squares ensures that there is a unique

νj ∈ c−1(j) and βj ∈ c−1(i) such that ψ(ε
m−ei−ej
j )αn ∼ νjβj.

αn

ν3

ν2

β3

β2

α1

α2

αn−1

For each j, the inductive hypothesis applied to ξνj for any traversal ξ of ψ|Ek,m−ei−ej
yields a unique C-compatible morphism λj traversed by ξνj.

λ3

λ2

λ2 ∩ λ3

αn

ν3

ν2

β3

β2

We claim that for distinct p, q, the morphisms λp and λq agree on the intersection of
their domains, namely Ek,m−ep−eq . To see this, let τ p,q := λq(ε

m−ep−eq−ei
i ). Then τ p,q =

λp(ε
m−ep−eq−ei
i ) because the two are the paths h2 and h2 obtained from Definition 1.6(2)

with

(1.2) f = ψ(εm−ep−eq−eivp ), g = ψ(εm−eq−eiq ) and h = αn.

Hence each of λp|Ek,m−ep−eq and λq|Ek,m−ep−eq is traversed by ζτ p,q for any traversal ζ of

ψ|Ek,m−ep−eq−ei . The inductive hypothesis therefore gives

(1.3) λp|Ek,m−ep−eq = λq|Ek,m−ep−eq .

Each λp agrees with ψ on the intersection of their domains by the inductive hypothesis

and the definition of the λp. Since E1
k,m =

(⋃
mp 6=0E

1
k,m−ep

)
∪ {εm−epp : mp 6= 0},
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equation (1.3) implies that there is a well-defined coloured-graph morphism ϕ : Ek,m →
E determined by

ϕ|Ek,m−ei = ψ

ϕ|Ek,m−ep = λp whenever p 6= i and mp 6= 0,

ϕ(εm−eii ) = αn and

ϕ(εm−epp ) = βp for all p 6= i with mp 6= 0.

Every square which occurs in ϕ either occurs in one of the λp or occurs in the cube
κp,q traversed by the path fgh of (1.2) for some p, q. Since the λp and the κp,q are all
C-compatible, it follows that ϕ is also. That the βp and λp were uniquely determined by
requiring that all squares occurring in them belonged to C implies that ϕ is the unique
C-compatible morphism traversed by α. �

Corollary 1.8. Let E be a k-coloured graph, and let C be a complete and associative
collection of squares for E. If

ϕ : Ek,m → E and ψ : Ek,n → E

are C-compatible coloured-graph morphisms such that ϕ(m) = ψ(0), then there is a
unique C-compatible morphism (ϕψ) : Ek,m+n → E such that

(ϕψ)(εpi ) = ϕ(εpi ) whenever p+ ei ≤ m, and

(ϕψ)(εpi ) = ψ(εp−mi ) whenever m ≤ p ≤ m+ n− ei.
(1.4)

Moreover, this defines an associative partial multiplication on the set

ΛE,C =
⋃
m∈Nk
{ϕ : Ek,m → E|ϕ is a C-compatible coloured-graph morphism}.

Proof. Fix paths αϕ and αψ in E which traverse ϕ and ψ. Then Lemma 1.7 implies
that there is a unique C-compatible coloured-graph morphism ϕψ traversed by αϕαψ.
The uniqueness assertion of Lemma 1.7 implies that ϕψ satisfies (1.4). Moreover, any
coloured-graph morphism π satisfying (1.4) is traversed by αϕαψ and hence another
application of uniqueness from Lemma 1.7 implies that π = ϕψ.

Associativity follows from associativity of concatenation of paths in E. �

Theorem 1.9. Let E be a k-coloured graph, and let C be a complete and associative
collection of squares for E. Let Λ = ΛE,C be as in Corollary 1.8, and define d : Λ→ Nk

by d(ϕ) = m if dom(ϕ) = Ek,m. Then Λ is the unique k-graph such that Λei = c−1(i)
for each i and fg = g′f ′ in Λ if and only if fg ∼ g′f ′ in E.

Proof. Corollary 1.8 shows that Λ is a category, and it has Λei = c−1(i) and fg = g′f ′

whenever fg ∼ g′f ′ in E by definition. To see that Λ is a k-graph, we must verify the
factorisation property. This follows from Lemma 1.7 and uniqueness of factorisations of
paths in E.

For uniqueness, observe that if Γ is a k-graph with the given properties, then each
γ ∈ Γ determines a C-compatible coloured-graph morphism ϕγ by ϕγ(ε

n
i ) = α where

α is the unique path satisfying γ = γ′αγ′′ with d(γ′) = m, d(α) = ei and d(γ′′) =
d(γ)−m− ei. �
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Example 1.10. The associative condition is necessary in three or more dimensions as
is demonstrated by the following three-coloured graph. The example is due to Jack
Spielberg, though he has not published it himself — it appeared with his permission in
[12, Examples 5.15(ii)]

f

g

h

There is a unique complete collection of squares in this graph, but the collection is not
associative as can be seen by chasing through the possible factorisations of the path
fgh.

2. k-graph C∗-algebras and the gauge-invariant uniqueness theorem

The results on C∗-algebras in this section are taken from [19], though the germ of the
idea of using ultrafilters as infinite paths in a k-graph is due to Exel [6].

A k-graph is row-finite if |vΛn| < ∞ for all v ∈ Λ0 and n ∈ Nk. It is locally convex
if whenever µ ∈ Λei and ν ∈ Λej with i 6= j and r(µ) = r(ν), we have s(µ)Λej 6= ∅ and
s(ν)Λei 6= ∅.

Pictorially, the graph on the left below is the basic example of a 2-graph which is not
locally convex, and the picture on the right illustrates one way to extend the example
on the left into something which is locally convex.

µ

ν µ

ν



k-GRAPH C∗-ALGEBRAS 7

Remark 2.1. If Λ is locally convex, then a straightforward induction shows that if
m ∧ n = 0 and µ ∈ Λm and ν ∈ Λn with r(µ) = r(ν), then s(µ)Λn and s(ν)Λm are
nonempty.

We write Λ≤n for the set

Λ≤n = {λ ∈ Λ : d(λ) ≤ n and d(λ)i < ni =⇒ s(λ)Λei = ∅}.

Lemma 2.2. Let Λ be a locally convex k-graph. Fix m,n ∈ Nk. We have Λ≤(m+n) =
Λ≤mΛ≤n.

Proof. If µ ∈ Λ≤m and ν ∈ Λ≤n, then certainly d(µν) ≤ m + n. Suppose d(µν)i <
(m+ n)i. There are two cases to consider: d(ν)i < ni or d(µ)i < mi. If d(ν)i < ni, then
s(µν)Λei = s(ν)Λei = ∅. On the other hand, if d(µ)i < mi, then s(µ)Λei = ∅, and then
s(µν)Λei = s(ν)Λei = ∅ by the factorisation property. So Λ≤mΛ≤n ⊂ Λ≤(m+n).

Now suppose that λ ∈ Λ≤(m+n). Let m′ := m ∧ d(λ), and let n′ := n ∧ (d(λ) −m′).
It is straightforward to check that m′ + n′ = (m+ n) ∧ d(λ). Let µ = λ(0,m′). Clearly
d(µ) ≤ m and d(ν) ≤ n. If d(ν)i < ni then d(λ)i < (m′ + n)i ≤ (m + n)i, and
hence s(ν)Λei = s(λ)Λei = ∅, giving ν ∈ Λ≤n. Now suppose that d(µ)i < mi. Then
d(µ)i = d(λ)i, so d(ν)i = 0. Moreover, d(λ)i < mi ≤ (m + n)i whence s(λ)Λei = ∅. It
then follows from Remark 2.1 that r(ν)Λei = ∅. So µ ∈ Λ≤m. �

The following definition of a Cuntz-Krieger Λ-family, due originally to Yeend, is the
one suitable to locally convex row-finite k-graphs. However, it is very closely modelled
on Kumjian and Pask’s original definition for row-finite k-graphs with no sources. Like-
wise, our analysis in this section leading up to the gauge-invariant uniqueness theorem
largely comes from [19] but is heavily based on Kumjian and Pask’s seminal work in
[11, Section 2].

Definition 2.3 ([19, Definition 3.3]). Let Λ be a locally convex row-finite k-graph. A
Cuntz-Krieger Λ-family in a C∗-algebra B is a function t : Λ→ B, λ 7→ tλ such that

(CK1) {tv : v ∈ Λ0} is a set of mutually orthogonal projections;
(CK2) tµtν = tµν whenever s(µ) = r(ν);
(CK3) t∗µtµ = ts(µ) for all µ ∈ Λ; and

(CK4) tv =
∑

λ∈vΛ≤n tλt
∗
λ for all v ∈ Λ0 and n ∈ Nk.

We write C∗(t) for C∗({tλ : λ ∈ Λ}).

To give an example of a Cuntz-Krieger Λ-family, we introduce filters in k-graphs.
The idea of using filters and ultrafilters to construct representations of combinatorial
objects such as k-graphs is due to Exel in the context of inverse semigroups, though the
procedure is greatly simplified in our setting. To introduce filters, we need the notion
of a minimal common extension of paths in Λ.

Definition 2.4. Let Λ be a k-graph, and let µ, ν ∈ Λ We say that λ is a minimal
common extension of µ and ν if d(λ) = d(µ) ∨ d(ν) and λ = µµ′ = νν ′ for some
µ′, ν ′ ∈ Λ. We write MCE(µ, ν) for the set of all minimal common extensions of µ and
ν.

A filter of a k-graph Λ is a nonempty set x ⊂ Λ such that
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(F1) if λ ∈ x and λ = µµ′, then µ ∈ x; and
(F2) if µ, ν ∈ x then MCE(µ, ν) ∩ x 6= ∅.

It follows that if x is a filter of Λ, then Λ0 ∩ x contains a unique element r(x), and also
that if µ, ν ∈ x then there is a unique element µ∨x ν of MCE(µ, ν) which belongs to x.

An ultrafilter of Λ is a filter which is maximal with respect to containment. We write

Λ̂ for the set of filters of Λ, and Λ̂∞ for the set of ultrafilters of Λ.

Lemma 2.5. Let Λ be a locally convex row-finite k-graph, and fix λ ∈ Λ. Then there
exists an ultrafilter x of Λ such that Λ ∈ Λ.

Proof. Let Xλ be the collection of filters of Λ which contain λ. Since {λ(0, p) : p ≤ d(λ)}
is a filter, Xλ is nonempty. Moreover, if C is an ascending chain in Xλ, then xC :=

⋃
C

is itself an element of Xλ, so every chain has an upper bound. Hence Zorn’s Lemma
implies that Xλ has a maximal element. Elements which are maximal in Xλ are also

maximal in Λ̂∞ because filters which do not belong to Xλ do not contain λ, and so
cannot dominate elements of Xλ. �

Lemma 2.6. Let Λ be a row-finite locally-convex k-graph. Let x ∈ Λ̂ and fix λ ∈ x and
µ ∈ Λr(x). Then

(1) λ∗ · x := {α : λα ∈ x} and µ · x := {β : βΛ ∩ µx 6= ∅} are filters;
(2) λ · (λ∗ · x) = x = µ∗ · (µ · x).

(3) If x belongs to Λ̂∞, then so do λ∗ · x and µ · x.

Proof. (1) If α ∈ λ∗x and α = βα′ then λβα ∈ x and then (F1) forces λβ ∈ x and hence
β ∈ λ∗ · x. If α ∈ µ · x and α = βα′, then ∅ 6= αΛ∩µx ⊂ βΛ∩µx, so β ∈ µ · x. So λ∗ · x
and µ · x satisfy (F1).

For (F2), suppose that α, β ∈ λ∗ · x. Then λα ∨x λβ belongs to MCE(λα, λβ) ∩ x =
λMCE(α, β) ∩ x. Hence MCE(α, β) ∩ λ∗ · x 6= ∅. If α, β ∈ µ · x, then there exists
µµ′ ∈ x such that µµ′ = αα′ = ββ′ for some α′, β′. Use the factorisation property to
write µµ′ = τη where d(τ) = d(α) ∨ d(β). Then τ ∈ MCE(α, β) and τΛ ∩ µx 6= ∅, so
τ ∈ MCE(α, β) ∩ µ · x.

(2) We calculate

α ∈ λ · (λ∗ · x) ⇐⇒ αΛ ∩ λ(λ∗ · x) 6= ∅
⇐⇒ αΛ ∩ {λβ : λβ ∈ x} 6= ∅
⇐⇒ αΛ ∩ x 6= ∅.

Similarly, β ∈ µ∗ · µ · x ⇐⇒ µβ ∈ µ · x ⇐⇒ µβΛ ∩ µx 6= ∅ ⇐⇒ ⇐⇒ βΛ ∩ x 6=
∅ ⇐⇒ β ∈ x.

(3) Suppose that λ∗x ⊂ y ∈ Λ̂. Then x = λ · λ∗ · x ⊂ λ · y, so λ · y = x and then
y = λ∗ · λ · y = λ∗ · x. Similarly for µ · x. �

Lemma 2.7. Let Λ be a locally convex row-finite k-graph. If x ∈ Λ̂∞ and n ∈ Nk, then
r(x)Λ≤n ∩ x 6= ∅.

Proof. Fix an increasing cofinal subsequence (µi)
∞
i=1 of x such that µ0 = r(x). For each

i, each α ∈ s(µi)Λ
≤n, and each j ≤ i, Lemma 2.2 implies that there is a unique β ∈

s(αj)Λ
≤n such that µiα ∈ µjβΛ. Since each s(µi)Λ

≤n is finite, we may inductively choose
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αi ∈ s(µi)Λ≤n such that µiαi ∈ µjαjΛ whenever j ≤ i, and such that µiαiΛ ∩ αlΛ≤n is
nonempty for infinitely many (and hence all) l ≥ i.

The set y := {β ∈ Λ : µiαi ∈ βΛ for some i} is a filter of Λ which contains x. Since
x is an ultrafilter, y = x. Since α0 ∈ y by definition, and since α0 ∈ r(x)Λ≤n, the result
follows. �

Example 2.8. Let Λ be a locally convex row-finite k-graph, and let H := `2(Λ̂∞) with

canonical orthonormal basis {ξx : x ∈ Λ̂∞}. For λ ∈ Λ, define

Tλξx := χx(s(λ))ξλ·x.

Routine calculations show that Tλ is a partial isometry on H such that

T ∗λξx = χx(λ)ξλ∗·x, so TλT
∗
λ = projspan{ξx:λ∈x} .

Further calculations show that the map T : λ → Tλ is a Cuntz-Krieger Λ-family in
B(H) (it satisfies (CK4) by Lemma 2.7). In particular that for any k-graph Λ there
exist Cuntz-Krieger Λ-families in which every tλ is nonzero.

Lemma 2.9. Let Λ be a locally convex row-finite k-graph and let t be a Cuntz-Krieger
Λ-family. Then for µ, ν ∈ Λ, we have

MCE(µ, ν) = µΛ≤(d(µ)∨d(ν))−d(µ) ∩ νΛ≤(d(µ)∨d(ν))−d(ν)

= µΛ(d(µ)∨d(ν))−d(µ) ∩ νΛ(d(µ)∨d(ν))−d(ν)
(2.1)

and

(2.2) t∗µtν =
∑

µµ′=νν′∈MCE(µ,ν)

tµ′t
∗
ν′ .

Proof. To establish (2.1) first note that

MCE(µ, ν) = µΛ(d(µ)∨d(ν))−d(µ)∩νΛ(d(µ)∨d(ν))−d(ν) ⊂ µΛ≤(d(µ)∨d(ν))−d(µ)∩νΛ≤(d(µ)∨d(ν))−d(ν)

by definition. For the reverse inclusion, note that λ ∈ µΛ∩ νΛ =⇒ d(λ) ≥ d(µ)∨d(ν).
To establish (2.2), let m := d(µ), n := d(ν) and use (CK4) to calculate

(2.3) t∗µtν = t∗µtµt
∗
µtνt

∗
νtν = t∗µ

( ∑
µ′∈Λ≤(m∨n)−m

tµµ′t
∗
µµ′

)( ∑
ν′∈Λ≤(m∨n)−n

tνν′t
∗
νν′

)
t∗ν .

By Lemma 2.2, each µµ′, νν ′ ∈ Λ≤m∨n, so another application of (CK4) ensures that
each tµµ′t

∗
µµ′tνν′t

∗
νν′ = δµµ′,νν′tµµ′t

∗
µµ′ . Hence

t∗µtν = t∗µ

( ∑
λ∈µΛ≤(m∨n)−m∩νΛ≤(m∨n)−n

tλt
∗
λ

)
t∗ν

=
∑

µµ′=νν′∈MCE(µ,ν)

t∗µtµtµ′t
∗
ν′tνtν by (2.1)

=
∑

µµ′=νν′∈MCE(µ,ν)

tµ′t
∗
ν′

by (CK3). �
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Corollary 2.10. Let Λ be a locally convex row-finite k-graph and let t be a Cuntz-Krieger
Λ-family. Then C∗(t) = span{tµt∗ν : µ, ν ∈ Λ}.

Our proof of the following result is taken more or less directly from Raeburn’s notes
on graph algebras [18] from the NSF-funded CBMS conference held at the University
of Iowa in 2004.

Proposition 2.11 (c.f. [18, Proposition 1.21]). There is a C∗-algebra C∗(Λ) generated
by a Cuntz-Krieger Λ-family s which is universal in the sense that each Cuntz-Krieger
Λ-family t induces a homomorphism πt : C∗(Λ) → C∗(t) satisfying π(sλ) = tλ for all
λ ∈ Λ. Moreover, each sλ is nonzero.

Proof. Let Λ∗sΛ := {(µ, ν) ∈ Λ×Λ : s(µ) = s(ν)}. Let A0 := cc(Λ∗sΛ) and for each µ, ν,

let δ(µ,ν) ∈ A0 denote the indicator function. Define ∗ : A0 → A0 by f ∗(µ, ν) := f(ν, µ),
and define a multiplication on A0 by extending the assignment

δ(µ,ν)δ(η,ζ) 7→
∑

νν′=ηη′∈MCE(ν,η)

δ(µν′,ζη′)

to a bilinear map. For each Cuntz-Krieger Λ-family t on Hilbert space, the partial
isometries tµt

∗
ν satisfy the same relations as the δµ,ν , so each such family determines a

representation πt of A0 such that πt(δ(µ,ν)) = tµt
∗
ν for all µ, ν.

Each tµt
∗
ν is a partial isometry, so its norm is less than or equal to 1. Hence for f ∈ A0,

‖πt(f)‖ =
∥∥∥ ∑

(µ,ν)∈Λ∗Λ

f(µ, ν)πt(δ(µ,ν))
∥∥∥ ≤∑

(µ,ν)

|f(µ,ν)|‖tµt∗ν‖ =
∑
(µ,ν)

|f(µ,ν)|.

Hence ‖f‖0 := supt a CK Λ-family ‖πt(f)‖ defines a seminorm on A0. Let I := {f : ‖f‖0 =
0}, and let A := A0/I. Let C∗(Λ) be the completion of A in the norm induced by
‖ · ‖0, and let sλ := δ(λ,s(λ)) + I for all λ. Then A is a C∗-algebra, and is universal by
construction.

Since the Cuntz-Krieger family T of Example 2.8 consists of nonzero partial isometries,
the universal property of C∗(Λ) ensures that the sλ are nonzero as well. �

Remark 2.12. Let Λ be a locally convex row-finite k-graph and let t be a Cuntz-Krieger
Λ-family. Fix µ, ν ∈ Λ with s(µ) = s(ν) = v, and suppose that tv 6= 0. Then

‖tµt∗ν‖2 = ‖tνt∗µtµt∗ν‖ = ‖tνt∗ν‖ = ‖tν‖2 = ‖t∗νtν‖ = ‖tv‖ 6= 0.

In particular, each sµs
∗
ν 6= 0 in C∗(Λ).

For each z ∈ Tk, the map λ 7→ zd(λ)sλ is a Cuntz-Krieger Λ-family, so the universal
property of C∗(Λ) gives an endomorphism

γz : C∗(Λ)→ C∗(Λ) such that γz(sλ) = zd(λ)sλ for all λ.

Since γw ◦ γz(sλ) = γwz(sλ) and γ1(sλ) = sλ for all λ, each γz is an automorphism of
C∗(Λ) and z 7→ γz is an action of Tk. If zn → z, then γzn(sµs

∗
ν)→ γz(sµs

∗
ν) for all µ, ν,

and then an ε
3

argument shows that γ is strongly continuous. It is then standard (see, for
example, [18, Proposition 3.2]) that Φγ(a) :=

∫
Tk γz(a) dz defines a faithful conditional

expectation from C∗(Λ) to C∗(Λ)γ := {a ∈ C∗(Λ) : γz(a) = a for all z ∈ Tk}.
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In the proof of our next main result, we shall need the following uniqueness theorem
for C∗-algebras generated by matrix units. Given a set X, a family of matrix units
over X in a C∗-algebra A is a collection of elements {θx,y : x, y ∈ X} ⊂ A such that
θ∗x,y = θy,x and θw,xθy,z = δx,yθw,z for all w, x, y, z ∈ Z.

Lemma 2.13. Let X be a countable set. There is a C∗-algebra MX generated by a
family of matrix units over X which is universal in the sense that given any other family
{ωx,y : x, y ∈ X} ⊂ B of matrix units over X, there is a homomorphism πω : MX → B
such that πω(θx,y) = ωx,y for all x, y. Moreover MX is simple.

Proof. If {ωx,y : x, y ∈ X} is a family of matrix units, then the relations imply that
the ωx,x are projections, and hence that the ωx,y are partial isometries. An argument
similar to that of Proposition 2.11 shows that there is a C∗-algebra MX with the desired
universal property.

For any finite subset F of X, the set MF := span{θx,y : x, y ∈ F} is a finite-
dimensional C∗-subalgebra of MX , and MX is the direct limit of these MF . Since
injective C∗-homomorphisms are isometric, a homomorphism of MX which is injective
on each MF is isometric on each MF and hence on the closure of their union. So it
suffices to check that each MX is simple. Suppose that π is a homomorphism of MF

and π(
∑

x,y∈F ax,yθx,y) = 0 and that ax,y 6= 0 for some x, y ∈ F . Then for all w, z ∈ F ,
we have

π(θw,z) =
1

ax,y
ωw,xπ

( ∑
x,y∈F

ax,yθx,y

)
ωy,z = 0

and hence π is the zero homomorphism. �

Proposition 2.14. Let Λ be a locally convex row-finite k-graph. Then

(1) C∗(Λ)γ = span{sµs∗ν : d(µ) = d(ν), s(µ) = s(ν)};
(2) C∗(Λ)γ = lim−→n∈Nk

⊕
v∈Λ0,m≤n span{sµs∗ν : µ, ν ∈ Λ≤n ∩ Λmv}.

(3) Each span{sµs∗ν : µ, ν ∈ Λ≤n ∩ Λmv} ∼= MΛ≤n∩Λmv.

Proof. (1) For µ, ν ∈ Λ, we have

Φγ(sµs
∗
ν) =

∫
Tk
zd(µ)−d(ν)sµs

∗
ν =

{
sµs
∗
ν if d(µ) = d(ν)

0 otherwise.

Since Φγ ◦ Φγ = Φγ and Φγ(C∗(Λ)) = C∗(Λ)γ, this proves (1).
(2) Since µ, ν ∈ Λ≤n implies s∗µsν = δµ,νss(µ), we have

span{sµs∗ν : µ, ν ∈ Λ≤n} =
⊕

v∈Λ0,m≤n

span{sµs∗ν : µ, ν ∈ Λ≤n ∩ Λmv}

for each n, v,m. If n ≤ p, and µ, ν ∈ Λ≤n with s(µ) = s(ν), then

sµs
∗
ν =

∑
λ∈s(µ)Λ≤p−n

sµλs
∗
νλ ∈ span{sηs∗ζ : η, ζ ∈ Λ≤p}

by Lemma 2.2. Hence

span{sµs∗ν : µ, ν ∈ Λ≤n} ⊂ span{sµs∗ν : µ, ν ∈ Λ≤p},
and (2) follows.
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(3) Fix n ∈ Nk, m ≤ n and v ∈ Λ0. For µ, ν, σ, τ ∈ Λ≤n ∩ Λmv, we have (sµs
∗
ν)
∗ =

sνs
∗
µ and sµs

∗
νsηs

∗
ζ = δν,ζsµs

∗
ζ . Remark 2.12 therefore implies that the sµs

∗
ν form a

family of nonzero matrix units indexed by Λ≤n ∩Λmv, and the result then follows from
Lemma 2.13. �

Proposition 2.15. Let Λ be a locally convex row-finite k-graph. Suppose that t is
a Cuntz-Krieger Λ-family such that each tv is nonzero, and suppose that there is a
linear map Ψ : C∗(t) → C∗(t) such that Ψ(tµt

∗
ν) = δd(µ),d(ν)tµt

∗
ν for all µ, ν. Then

πt : C∗(Λ)→ C∗(t) is injective.

Proof. By Remark 2.12, whenever s(µ) = s(ν), we have tµt
∗
ν 6= 0. Since MΛ≤n∩Λmv

is simple, Proposition 2.14(3) implies that πt is injective, hence isometric, on each
span{sµs∗ν : µ, ν ∈ (Λ≤n ∩ Λm)v}. So Proposition 2.14(2) implies that πt is isomet-
ric on C∗(Λ)γ. Since Ψ ◦ πt = πt ◦ Φγ, and since Φγ is faithful on positive elements, we
have

πt(a) = 0 =⇒ Ψ(πt(a
∗a)) = 0 =⇒ πt(Φ

γ(a∗a)) = 0 =⇒ Φγ(a∗a) = 0 =⇒ a = 0.
�

The following is one of the many generalisations to date of an Huef and Raeburn’s
gauge-invariant uniqueness theorem for unital Cuntz-Krieger algebras, and its proof like
all the others is more or less identical to the one originally given by an Huef and Raeburn
[9, Theorem 2.3]. It will be the single most useful result in our repertoire later in the
course, and plays a similar role in the theory of k-graph algebras in general.

Corollary 2.16 (The gauge-invariant uniqueness theorem). Let Λ be a locally convex
row-finite k-graph. Suppose that t is a Cuntz-Krieger Λ-family such that each tv is
nonzero and such that there is an action β of Tk on C∗(t) such that βz(tλ) = zd(λ)tλ for
all λ. Then πt is injective.

Proof. The map Ψ : a 7→
∫

T βz(a) dz from C∗(t) to C∗(t) satisfies the hypotheses of
Proposition 2.15. �

3. The Cuntz-Krieger uniqueness theorem and simplicity

The formulations of aperiodicity and cofinality used in this section are due to Lewin.
The aperiodicity condition, in particular, is the latest refinement of a condition originally
given by Kumjian and Pask which has since been re-cast and sharpened by many authors
including Raeburn-S-Yeend, D. Robertson, and Shotwell.

Definition 3.1. We say that a k-graph Λ is aperiodic if, for all µ, ν ∈ Λ with s(µ) = s(ν),
there exists τ ∈ s(µ)Λ such that MCE(µτ, ντ) = ∅.

The factorisation property implies that MCE(µ, ν) 6= ∅ if and only if µΛ ∩ νΛ 6= 0.

Lemma 3.2. Let Λ be a k-graph, and fix v ∈ Λ0 and a finite subset H of Λv. Then
there exists τ ∈ vΛ such that MCE(µτ, ντ) = ∅ for all µ, ν ∈ H.

Proof. We proceed by induction on H. If |H| = 1 there is nothing to do.
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Suppose there exists τ with the desired property whenever |H| < n, and fix H ⊂ Λv
with |H| = n. Let λ be any element of H and let G := H \ {λ}. By the induc-
tive hypothesis there exists τ0 such that MCE(µτ0, ντ0) = ∅ for all µ, ν ∈ G. Enu-
merate G = {µ1, . . . , µn−1} and iteratively choose paths τi ∈ Λ such that for each i,
MCE((µi+1τ0 . . . τi)τi+1, (λτ0τi)τi+1) = ∅. Then τ := τ0τ1 . . . τn−1 has the desired prop-
erty: if µ, ν ∈ G, then

MCE(µτ, ντ) ⊂ µτ0Λ ∩ ντ0Λ = ∅,
and if µ = µi ∈ G, then

MCE(µτ, λτ ) ⊂ µiτ0 . . . τiΛ ∩ λτ0 . . . τiΛ = ∅. �

The following theorem is a generalisation of Cuntz and Krieger’s original uniqueness
result theorem for the C∗-algebras OA associated to {0, 1}-matrices A [2]. Indeed, the
proof still retains many elements of Cuntz’s original analysis of On [1].

Theorem 3.3 (The Cuntz-Krieger uniqueness theorem). Let Λ be a locally convex row-
finite k-graph. Suppose that Λ is aperiodic. Let t be a Cuntz-Krieger Λ-family such that
tv 6= 0 for all v ∈ Λ0. Then πt is injective.

Proof. We aim to apply Proposition 2.15. It suffices to show that for any finite F ⊂ Λ
and any collection of scalars {aµ,ν : µ, ν ∈ F},∥∥∥ ∑

µ,ν∈F
d(µ)=d(ν)

aµ,νtµt
∗
ν

∥∥∥ ≤ ∥∥∥ ∑
µ,ν∈F

aµ,νtµt
∗
ν

∥∥∥,
for this implies that there is a well-defined linear map Ψ satisfying Ψ(tµt

∗
ν) = δd(µ),d(ν)tµt

∗
ν

for all µ, ν.
Let n :=

∨
λ∈F d(λ). Then

∑
µ,ν∈F aµ,νtµt

∗
ν ∈ span{tµt∗ν : µ, ν ∈ Λ≤n} by Proposi-

tion 2.14(2). Fix ε > 0. By Proposition 2.14(2) again, there exist v ∈ Λ0 and m ≤ n
such that the strict-topology limit

Pv,m :=
∑

λ∈Λ≤n∩Λmv

tµt
∗
µ

satisfies ∣∣∣ ∥∥∥ ∑
µ,ν∈F

d(µ)=d(ν)

aµ,νtµt
∗
ν

∥∥∥− ∥∥∥Pv,m ∑
µ,ν∈F

d(µ)=d(ν)

aµ,νtµt
∗
νPv,m

∥∥∥ ‖ < ε.

Since Λ is row finite, FΛ∩Λ≤n∩Λm is finite. Since d(µ) 6= d(ν), we have that µµ′, νν ′ ∈
Λm implies d(µ′) 6= d(ν ′) and hence µ′ 6= ν ′. Hence Lemma 3.2 implies that there exists
τ ∈ vΛ such that whenever µ, ν ∈ F with d(µ) 6= d(ν), and µµ′, νν ′ ∈ Λ≤n ∩ Λmv, we
have MCE(µ′τ, ν ′τ) = ∅. Let P be the strict-topology limit

P :=
∑

λ∈Λ≤n∩Λmv

tµτ t
∗
µτ ≤ Pv,m.

We have Pv,mspan{tµt∗ν : µ, ν ∈ F}Pv,m ⊂ span{tηt∗ζ : η, ζ ∈ Λ≤n ∩ Λmv}. By
Proposition 2.14(3), tηt

∗
ζ 7→ Θη,ζ determines an isomorphism

span{tηt∗ζ : η, ζ ∈ Λ≤n ∩ Λmv} ∼= K(`2(Λ≤n ∩ Λmv)).
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Since Ptηt
∗
ζP = tητ t

∗
ζτ for all η, ζ ∈ Λ≤n ∩Λmv and since the tητ t

∗
ζτ also form a family of

nonzero matrix units, compression by P is an injective C∗-homomorphism, and hence
isometric on span{tηt∗ζ : η, ζ ∈ Λ≤n ∩ Λmv}. In particular,∥∥∥P ∑

µ,ν∈F
d(µ)=d(ν)

aµ,νtµt
∗
νP
∥∥∥ =

∥∥∥Pv,m ∑
µ,ν∈F

d(µ)=d(ν)

aµ,νtµt
∗
νPv,m

∥∥∥ =
∥∥∥ ∑

µ,ν∈F
d(µ)=d(ν)

aµ,νtµt
∗
ν

∥∥∥.
Moreover, if µ, ν ∈ F with d(µ) 6= d(ν), then

Ptµt
∗
νP =

∑
µµ′,νν′∈Λ≤n∩Λmv

tµµ′τ t
∗
µµ′τ tµt

∗
νtνν′τ t

∗
νν′τ =

∑
µµ′,νν′∈Λ≤n∩Λmv

tµµ′τ t
∗
µ′τ tν′τ t

∗
νν′τ = 0

by choice of τ . Hence∥∥∥ ∑
µ,ν∈F

d(µ)=d(ν)

aµ,νtµt
∗
ν

∥∥∥ ≤ ∥∥∥P ∑
µ,ν∈F

d(µ)=d(ν)

aµ,νtµt
∗
νP
∥∥∥+ ε

=
∥∥∥P ∑

µ,ν∈F

aµ,νtµt
∗
νP
∥∥∥+ ε

≤
∥∥∥ ∑
µ,ν∈F

aµ,νtµt
∗
ν

∥∥∥+ ε.

Letting ε→ 0 we obtain the desired norm inequality. �

Corollary 3.4. Let Λ be a locally convex row-finite k-graph. The following are equivalent

(1) Λ is aperiodic;
(2) each nontrivial ideal of C∗(Λ) contains sv for some v ∈ Λ0.

Proof. (1) =⇒ (2) is the Cuntz-Krieger uniqueness theorem.
For (2) =⇒ (1) we prove the converse. Suppose that there exist distinct µ, ν ∈ Λ

such that MCE(µτ, ντ) 6= ∅ for all τ ∈ s(µ)Λ.
We claim that an ultrafilter x of Λ contains µ if and only if it contains ν. To see

this, it suffices by symmetry to show that µ ∈ x implies ν ∈ x. Fix an ultrafilter x
such that µ ∈ x. Fix a cofinal sequence (µi)

∞
i=0 of x such that µ0 = µ. For each i,

µi = µτi for some τi ∈ Λ. By assumption, MCE(µτi, ντi) 6= ∅ for all i. For j ≤ i,
we have MCE(µτi, ντi) ⊂ MCE(µτj, ντj)Λ. Since each MCE(µτi, ντi) is finite, we may
inductively choose γi ∈ MCE(µτi, ντi) such that γi ∈ γjΛ for all j ≤ i, and such that
γiΛ ∩MCE(µτl, ντl) 6= ∅ for infinitely many, and hence all, l > i. Let y = {α ∈ Λ : γj ∈
αΛ for some j}. Then y is a filter. We have x ⊂ y because the µi were cofinal. Hence
y = x. Since ν ∈ y by definition, we conclude that ν ∈ x. This proves the claim.

By the preceding paragraph, the Cuntz-Krieger Λ-family T of Example 2.8 satisfies
TµT

∗
ν = TµT

∗
µ . Moreover, Tv 6∈ ker(πT ) for all T . So it suffices to show that sµs

∗
ν 6= sµs

∗
µ.

We have sµs
∗
ν 6= 0 by Remark 2.12. Since MCE(µ, ν) 6= 0 and µ 6= ν, we have d(µ) 6=

d(ν). Hence there exists z ∈ Tk such that zd(µ)−d(ν) = −1. Now

(1− γz)(sµs∗µ − sµs∗ν) = 2sµs
∗
µ 6= 0

and hence sµs
∗
µ 6= sµs

∗
ν as required. �
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Definition 3.5. We say that a locally convex row-finite k-graph Λ is cofinal if, for all
v, w ∈ Λ0, there exists n ∈ Nk such that wΛs(λ) 6= ∅ for all λ ∈ vΛ≤n.

Proposition 3.6. Let Λ be a locally convex row-finite k-graph. The following are equiv-
alent

(1) Λ is cofinal;
(2) no proper ideal of C∗(Λ) contains sv for any v ∈ Λ0.

Proof. (1) =⇒ (2). Fix an ideal I and a vertex w such that sw ∈ I. Fix v ∈ Λ0. Since
Λ is cofinal, there exists n ∈ Nk and paths {µλ : λ ∈ vΛ≤n} such that µλ ∈ wΛs(λ) for
each λ ∈ vΛ≤n. Hence

sv =
∑

λ∈vΛ≤n

sλs
∗
λ =

∑
λ∈vΛ≤n

sλs
∗
µλ
swsµλs

∗
λ ∈ I.

(2) =⇒ (1). We prove the contrapositive. Fix v, w ∈ Λ0 and suppose that for each
n ∈ Nk there exits λ ∈ vΛ≤n such that wΛs(λ) = ∅. As before, we may inductively
choose paths µn ∈ vΛ≤n such that µn ∈ µmΛ for all m ≤ n and such that for infinitely
many (and hence all) p > n there exists η ∈ µnΛ ∩ Λ≤p such that wΛs(η) = ∅. The
set x = {α : µn ∈ ηΛ for some n} is a filter. It is an ultrafilter because if β 6∈ x, then
µd(β) 6= β, and then since β, µd(β) ∈ Λ≤d(β) we have MCE(µd(β), β) = ∅, and so there is
no filter containing x which also contains β. Let

Xw := {x ∈ Λ̂∞ : wΛs(λ) = ∅ for all λ ∈ x}.

Then `2(Xw) ⊂ `2(Λ̂∞) is invariant for the Cuntz-Krieger Λ-family T of Example 2.8, so
Sλ := Tλ|`2(Xw) determines a Cuntz-Krieger Λ-family S with Sw = 0 and Sv 6= 0. Hence
ker(πS) is a proper ideal containing a vertex projection. �

The following corollary, as stated, is due to D. Robertson. In its most general form,
for finitely aligned k-graphs, it was first proved by Shotwell [21, Theorem 4.5].

Corollary 3.7 ([20, Theorem 3.4]). Let Λ be a locally convex row-finite k-graph. Then
C∗(Λ) is simple if and only if Λ is aperiodic and cofinal.

Proof. Suppose that Λ is aperiodic and cofinal, and fix a nontrivial ideal I of C∗(Λ).
Then Corollary 3.4 implies that sv ∈ I for some v ∈ Λ0, and then Proposition 3.6 implies
that I = C∗(Λ). For the converse observe that if Λ is not cofinal, then Proposition 3.6
yields a nontrivial proper ideal of C∗(Λ), and if Λ is not cofinal, then Corollary 3.4 does
the same job. �

4. Constructions of k-graphs

Constructions of (k+ l)-graphs from k-graphs have appeared in many contexts begin-
ning with the cartesian product construction of Kumjian and Pask, and including many
authors since — we shan’t list them here, but we shall see a number of specific examples
later in these notes. The notion of a k-morph was introduced by Kumjian-Pask-S as a
unifying framework for these constructions.

Definition 4.1. A k-morph between k-graphs Λ and Γ (or a Λ–Γ-morph for short) is
a countable set X equipped with maps r : X → Λ0 and s : X → Γ0 and a bijection
θ : Xs∗rΓ→ Λs∗rX such that whenever θ(x, γ) = (λ, y) we have
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(M1) d(λ) = d(γ);
(M2) r(λ) = r(x);
(M3) s(γ) = s(y);

and whenever, in addition, θ(y, η) = (µ, z), we have
(M4) θ(x, γη) = (λµ, z).

if Λ = Γ, we call X a Λ-endomorph.

Examples 4.2. (1) Fix k-graphs Λ,Σ,Γ and coverings p : Σ → Λ and q : Σ → Γ;
that is, degree-preserving functors which restrict to bijections on each vΣ and Σv.
Let X = pXq := {xw : w ∈ Σ0}, and define r(xw) := p(xw) and s(xw) = q(xw).
Define θ : X ∗Γ→ Λ∗X by θ(xr(σ), q(σ)) = (p(σ), xs(σ)). (To see that this makes
sense observe that since q is a covering, σ can be recovered from r(σ) and q(σ).)
In the picture below, Λ and Γ are cycles of length 2 and 3 and Σ is the common
covering cycle of length 6.

qp

(2) Fix a k-graph Λ and an automorphism α of Λ. Let Xα := {xv : v ∈ Λ0} with
r = α, s = id, θ(xr(λ), λ) = (α(λ), xs(λ)). Then Xα is a Λ-endomorph. In fact, X
is precisely αXid from (1).

Theorem 4.3. Let Λ and Γ be k-graphs.

(1) Let X be a Λ–Γ-morph. There is a unique (k + 1)-graph Σ, called the linking
graph for X admitting an isomorphism i = iΛ, iΓ : ΛtΓ→ {σ ∈ Σ : d(σ)k+1 = 0}
and a bijection iX : X → Σek+1 such that r(iX(x)) = iΛ(r(x)) and s(iX(x)) =
iΓ(s(x)) for all x ∈ X and iX(x)iΓ(γ) = iΛ(λ)iX(y) whenever θ(x, γ) = (λ, y).

(2) Let Y be a Λ-endomorph. There is a unique (k + 1)-graph Λ×Y N admitting an
isomorphism iΛ : Λ → {γ ∈ Λ ×Y N : d(γ)k+1 = 0} and a bijection iY : Y →
(Λ×Y N)ek+1 such that r(iY (y)) = iΛ(r(y)) and s(iY (y)) = iΛ(s(y)) for all y ∈ Y ,
and such that iY (y)iΛ(µ) = iΛ(ν)iY (z) whenever θ(y, µ) = (ν, z).

Proof. (1) Let E = EΛtΓ be the k-coloured graph with colour map c associated to ΛtΓ.
Define F by F 0 := E0 and F 1 := E1 t {iX(x) : x ∈ X}, r, s : F 1 → F 0 inherited from
Λ, Γ and X, and colour map agreeing with c on E1 and with c(iX(x)) = k + 1 for all
x ∈ X. Define a collection C of squares to consist of those occurring in Λ t Γ together
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with those of the form

ϕ(ε0
k+1) = iX(x), ϕ(ε

ek+1

i ) = γ, ϕ(ε0
i ) = λ, and ϕ(εeik+1) = iX(y)

whenever θ(x, γ) = (λ, y). Then C is a complete collection of squares because θ is a
bijection, and is associative by (M4). Let Σ be the (k+1)-graph obtained from F , c and
C as in Theorem 1.9. In particular, Λ0ΣΛ0 is a k-graph with the same coloured graph as
Λ, so the uniqueness assertion of Theorem 1.9 gives an isomorphism iΛ : Λ → Λ0ΣΛ0,
and similarly for Γ. The (k + 1)-graph Σ satisfies the desired factorisation regime by
definition. Uniqueness of Σ follows from another application of the uniqueness assertion
of Theorem 1.9.

(2) The proof is basically the same as that of (1), except that iΛ : Λ→ Σ maps onto
{σ ∈ Σ : d(σ)k+1 = 0} rather than Λ0ΣΛ0. �

Examples 4.4. (1) The common covering of the 2-cycle and the 3-cycle by the 6-cycle
above gives the following linking graph:

qp

(2) Let Λ be the complete directed binary tree described as follows: the vertices at
level n are indexed by Z/2nZ and there is an edge from the vertex i at level n to the
vertex j at level n− 1 if i is congruent to j mod 2n−1. There is a unique automorphism
α which acts on the vertices at level n by addition of 1 modulo 2n. The resulting
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endomorph crossed product Λ×Xα N has the following coloured graph.

. . .

Theorem 4.5. Let Λ and Γ be locally convex row-finite k-graphs, and let X be a Λ–
Γ-morph in which both r and s are surjective, and r is finite-to-one. Let Σ be the
linking graph. Then

∑
v∈Λ0 siΛ(v) and

∑
w∈Γ0 siΓ(w) converge to full projections PΛ and

PΓ in the multiplier algebra MC∗(Σ). The map i∗Λ : sλ 7→ siΛ(λ) determines an injective
homomorphism i∗Λ : C∗(Λ) → PΛC

∗(Σ)PΛ, and the map i∗Γ : sγ 7→ siΓ(γ) determines an
isomorphism i∗Γ : C∗(Γ) ∼= PΓC

∗(Σ)PΓ.

Proof. Recall that C∗(Σ) = span{sσs∗τ : σ, τ ∈ Σ}. For any finite linear combination
a =

∑
σ,τ∈F aσ,τsσs

∗
τ , the projection Pr(F ) :=

∑
v∈r(F ) sv satisfies Pr(F )aPr(F ) = a. It

is therefore straightforward that
∑

v∈Λ0 siΛ(v) and
∑

w∈Γ0 siΓ(w) converge in the strict
topology.

To see that they are full, fix σ ∈ Σ. Then

sσ =
∑

α∈s(σ)Σ≤ek+1

sσsαPΓs
∗
α ∈ C∗(Σ)PΓC

∗(Σ),

so PΓ is full. Moreover since s : X → Γ0 is surjective, we may choose a surjective section
x : Γ0 → X for s, and then PΓ =

∑
v∈Γ0 s∗iX(x(v))PΛsiX(x(v)), and it follows that PΛ is full

also.
The map λ 7→ siΛ(λ) is a Cuntz-Krieger Λ-family in C∗(Σ) because the relations

in C∗(Σ) include all those from C∗(Λ); so the universal property of C∗(Λ) gives a
homomorphism i∗Λ : sλ 7→ siΛ(Λ). The gauge action on C∗(Σ) restricts to an action β of

Tk on PΛC
∗(Σ)PΛ such that βz(i

∗
Λ(sλ)) = zd(λ)i∗Λ(sλ) for all λ. Hence the gauge-invariant

uniqueness theorem implies that i∗Λ is injective. The same argument applies to i∗Γ.
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We clearly have i∗Λ : C∗(Λ) ⊂ PΛC
∗(Σ)PΛ and i∗Γ : C∗(Γ) ⊂ PΓC

∗(Σ)PΓ. Moreover,
for each σ, τ ∈ Σ, we have

PΓsσs
∗
τPΓ =

{
sσs
∗
τ if r(σ), r(τ) ∈ iΓ(Γ0)

0 otherwise.

Since r(σ) ∈ iΓ(Γ0) implies σ ∈ iΓ(Γ), it follows that PΓC
∗(Σ)PΓ ⊂ i∗Γ : C∗(Γ). �

Corollary 4.6. Under the hypotheses of Theorem 4.5 the vector space

HX := PΛC
∗(Σ)PΓ

is a C∗(Λ)–C∗(Γ)-correspondence with linking algebra C∗(Σ). If Λ = Γ so that X is a
Λ-endomorph, then HX is a C∗(Λ)–C∗(Λ)-correspondence, and C∗(Λ×X N) ∼= OHX .

Proof sketch. The first statement follows from general C∗-correspondence theory — the
C∗-identity ensures that the norm on the linking algebra is the same as the norm on
HX which is the same as the restriction of the norm on C∗(Σ).

For the second statement, recall that OHX is generated by a copy jΛ(C∗(Λ)) of C∗(Λ)
and a copy jH(HX) of HX . Setting

tiΛ(λ) := jΛ(sλ) for λ ∈ Λ and tiX(x) := jH(sx) for x ∈ X,

and extending this to a map t : Λ ×X N → OHX by (CK2) gives a Cuntz-Krieger
(Λ ×X N)-family which generates OX . The universal property of OHX implies that it
carries an action β of Tk+1 which matches up with the gauge action on jΛ(C∗(Λ)) and
satisfies βz(tiX(x)) = zk+1tx for all x ∈ X, so the gauge-invariant uniqueness theorem
implies that πt : C∗(Λ×X N)→ OHX is injective. �

Remark 4.7. One can deduce from the above construction that if Λ is a locally convex
row-finite k-graph, then C∗(Λ) is an iterated Cuntz-Pimsner algebra in the sense of
Deaconu [3]: given a k-graph Γ, the set Xk := Γek is an endomorph of the (k− 1)-graph
Λ := {λ ∈ Γ : d(λk) = 0} whose endomorph crossed-product is Γ. Hence C∗(Γ) ∼= OHXk .
Iterating this construction k-times gives an iterated Cuntz-Pimsner algebra construction
of C∗(Γ) with initial coefficient algebra c0(Γ0).

Corollary 4.8. Let α : Λ→ Λ be an automorphism. Then there is an automorphism α̃
of C∗(Λ) satisfying α̃(sλ) = sα(λ) for all λ, and C∗(Λ×Xα N) ∼= C∗(Λ)×α̃ Z.

Proof sketch. Since α is an automorphism, it is easy to check that λ 7→ sα(λ) determines
a Cuntz-Krieger family, and hence a homomorphism α̃ := πs◦α : C∗(Λ)→ C∗(Λ). Like-
wise, λ 7→ sα−1(λ) determines a Cuntz-Krieger family, and the associated homomorphism
πs◦α−1 is an inverse for α̃, whence α̃ is an automorphism of C∗(Λ) as claimed.

Let X = Xα. Since α is bijective, HX is isomorphic as a vector-space to C∗(Λ).
This isomorphism carries the inner product on HX to the standard right inner-product
〈a, b〉 := a∗b on C∗(Λ), so HX

∼= C∗(Λ)C∗(Λ) as a right Hilbert module. By definition
of θ : X ∗ Λ → Λ ∗ X, the left action on HX is given by tλ · tµ = α̃(tλ)tµ, so HX is
isomorphic as a right-Hilbert bimodule to α̃C

∗(Λ). Hence [17, Example 3, page 183]
shows that OHX ∼= C∗(Λ)×α̃ Z; combined with Corollary 4.6, this proves the result. �
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Hooptedoodle. In fact, the assignments X 7→ HX and Λ 7→ C∗(Λ) determine a con-
travariant functor from a category Mk whose objects are k-graphs and whose morphisms
are isomorphism classes of k-morhps (the fibred product of k-morphs determines a com-
position) to the category C with C∗-algebras as objects and isomorphism classes of
C∗-correspondences as morphisms. We can then construct graphs of k-morphs: these
are functors from 1-graphs to Mk. Indeed, this can be made to work for l-graphs of
k-morphs, though in that instance more information is required than just the functor.

Proposition 4.9. Let Λ0,Λ1, . . . ,Λn be locally convex row-finite k-graphs, and let Xi

be a Λi−1–Λi-morph with r, s surjective and r finite-to-one for each 1 ≤ i ≤ n. There is
a unique (k + 1)-graph Σ admitting an isomorphism i :

⊔n
i=0 Λi → {σ ∈ Σ : d(σ)k+1 =

0}, bijections iXi : iΛi−1
(Λ0

i−1)Σek+1iΛi(Λ
0
i ) such that the factorisation property in Σ is

inherited from the Λi and the bijections θi : Xi∗Λi → Λi−1∗Xi. The maps iΛi determine
injective homomorphisms i∗Λi : C∗(Λi) → C∗(Σ), each PΛi =

∑
v∈Λ0

i
i∗Λi(sv) is full, and

PΛnC
∗(Σ)PΛn = i∗Λn(C∗(Λn)).

Proof. The proof is almost identical to those of Theorems 4.3 and 4.5. �

Remark 4.10. If n = ∞ in Proposition 4.9, it is still straightforward to establish the
existence of the enveloping (k + 1)-graph Σ and that that PΛi are full, but in general
PΛnC

∗(Σ)PΛn 6= i∗Λn(C∗(Λn)) for any n.

5. Rank-2 Bratteli diagrams and AT-algebras.

The results in this section first appeared in [16], and indeed the results there were
stated more sharply, at the cost of more complicated proofs. Here we have proved them
in a very different manner to streamline arguments and highlight how the k-morph
construction can be used.

We will write cn for the 1-graph with vertices {vi : i ∈ Z/nZ} and edges {ei : i ∈
Z/nZ} with s(ei) = vi and r(ei) = vi+1.

v0 v1 v2 v3

. . .

vn−2 vn−1e0 e1 e2 en−2

en−1

Fix, for the section, a sequence (Λn)∞n=1 of 1-graphs such that each Λn =
⊔mn
i=1 Λn,i

where each Λn,i
∼= C|Λ0

n,i|. For each n ≥ 1, and each pair i, j with i ≤ mn−1 and j ≤ mn,

fix cni,j ∈ N. We assume that for each n ∈ N: (1) that for each i ≤ mn−1, there exits j
such that cni,j 6= 0; and (2) that for each j ≤ mn there exists i such that cni,j 6= 0.

Whenever cni,j 6= 0, let Xn
i,j := pXq be the k-morph of Example 4.2(1) for the canonical

coverings

p : Ccni,j gcd(|Λ0
n−1,i|,|Λ0

n,j |) → Λn−1,i and q : Ccni,j gcd(|Λ0
n−1,i|,|Λ0

n,j |) → Λn,j.

For each n, Xn :=
⊔
cni,j 6=0X

n
i,j is a Λn−1–Λn-morph.

As in Remark 4.10, there is a unique 2-graph Γ such that Γ0 =
⊔

Λ0
n, Γe1 =

⊔
Λ1
n

and Γe2 =
⊔
Xn, and where the factorisation rules are determined by the bijections

θni,j : Xn
i,j ∗ Λn,j → Λn−1,i ∗Xn

i,j. We call Γ a rank-2 Bratteli diagram.
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The following picture illustrates how the first few levels of a rank-2 Bratteli diagram
might look

. . .

To analyse C∗(Γ), we first study its building blocks.

Lemma 5.1. For n ≥ 1, C∗(Cn) ∼= Mn ⊗ C(T).

Proof. For i ∈ Z/nZ \ {n − 1}, define tei := θi+1,i ⊗ 1 ∈ Mn ⊗ C(T), and define
ten−1 := θ0,n−1 ⊗ z. Now define tvi := t∗eitei = θi,i ⊗ 1 for each vi ∈ C0

n, and for
α = α1 . . . α|α| define tα = tα1 . . . tα|α| . Then t is a Cuntz-Krieger Cn-family which

clearly generates Mn ⊗ C(T). There is an action β of T on Mn ⊗ C(T) determined by
βz(θi,j ⊗ f) := zi−jθi,j ⊗ (w 7→ f(znw), and we have βz ◦ πt = πt ◦ γz for all z. Hence the
gauge-invariant uniqueness theorem implies that πt is an isomorphism. �

Corollary 5.2. For each N ∈ N, let Γ[0, N ] :=
(⋃n

i=1 Λ0
n

)
Γ
(⋃n

i=1 Λ0
n

)
. Then C∗(Γ) ∼=⊕mn

i=1Mli ⊗ C(T) for some collection l1, . . . , lmN ∈ N \ {0}.

Proof. Proposition 4.9 and shows that

C∗(Γ[0,N ]) ∼Me PΛNC
∗(Γ[0,N ])PΛN

∼= C∗(ΛN) =

mN⊕
i=1

C∗(ΛN,i).

Lemma 5.1 then implies that C∗(Γ[0,N ]) ∼Me

⊕mN
i=1 C(T). Since C∗(Γ[0,N ]) is unital (with

identity
∑

v∈Γ0 sv), the result follows because amongst separable C∗-algebras, Morita
equivalence is the same as stable isomorphism. �

Proposition 5.3. For each N ∈ N, let PN :=
∑N

n=o

∑
v∈Λ0

n
sv ∈ C∗(Γ). Then each

PNC
∗(Γ)PN ∼= C∗(Γ[0,N ]), and

(5.1) C∗(Γ) =
⋃∞
N=0 PNC

∗(Γ)PN .

In particular, C∗(Γ) is an AT-algebra.

Proof. Yet another application of the gauge-invariant uniqueness theorem gives the iso-
morphism of C∗(Γ[0,N ]) onto PNC

∗(Γ)PN . For γ ∈ Γ, we have s(γ) ∈ Λ0
n for some n,

and then sγ ∈ PNC∗(Γ)PN for all N ≥ n, establishing (5.1). The last statement is by
definition of AT-algebras. �
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Theorem 5.4 ([16, Theorem 5.1]). Suppose that

(1) for all w ∈ Λ0 there exists n ∈ N such that wΛv 6= ∅ for all v ∈ Λ0
n; and

(2) for all l ∈ N there exists n ∈ N such that |Xn
i,j| ≥ l whenever cni,j 6= 0.

Then C∗(Γ) is simple and has real rank zero.

Proof. For simplicity, we just need to show that Γ is cofinal and aperiodic — Corol-
lary 3.7 does the rest.

For cofinality, fix v, w ∈ Γ0. By (1), there exists n0 ∈ N such that wΓu 6= ∅ for
all u ∈ Λ0

n0
. Since the Xn are k-morphs, so their source maps are surjective, we then

have wΓu 6= ∅ for all u ∈
⋃∞
n=n0

Λ0
n. Let m ∈ N be the integer such that v ∈ Λ0

m,

and let N := max{n0,m}. Then s(vΓ≤(N−m)e2) ⊂ Λ0
N , and hence wΓs(λ) 6= ∅ for all

λ ∈ vΓ≤(N−m)e2 . For aperiodicity, fix distinct µ, ν ∈ Γ with s(µ) = s(ν). If d(µ) = d(ν),
or or r(µ) 6= r(ν), then τ := s(µ) satisfies MCE(µτ, ντ) = ∅. Moreover, if d(µ)2 6=
d(ν)2, then either r(µ) 6= r(ν) or s(µ) 6= s(ν) since one pair or the other must be in
different levels of Γ0. So suppose that r(µ) = r(ν), s(µ) = s(ν) ∈ Λ0

n (and hence
d(µ)2 = d(ν)2) and that d(µ) 6= d(ν); so d(µ)1 6= d(ν)1. Factorise µ = µ′µ′′ and
ν = ν ′ν ′′ where d(µ′)1 = d(ν ′)1 = 0 = d(µ′′)2 = d(ν ′′)2. Using (2), fix m ≥ n + 1
such that |Xm

i,j| > |d(µ)1 − d(ν)1| for all i, j such that cmi,j 6= 0. Let τ be any element

of s(µ)Γ(m−n)e1 . By definition of the X l
i,j we may identify each with Z/|X l

i,j|Z, so we

can identify τ with a sequence [pn+1][pn+2] . . . [pm] where each [pl] ∈ Z/|X l
i,j|Z for some

i, j. In particular, [pm] ∈ Z/|Xm
i,j|Z for some i, j and by choice of m it follows that

[pm + d(µ)1] 6= [pm + d(ν)1]. By definition of the X l
i,j, we have

µτ = µ′µ′′τ = µ′[pn+1 + d(µ)1] . . . [pm + d(µ)1]µ′′′ and

ντ = ν ′ν ′′τ = µ′[pn+1 + d(ν)1] . . . [pm + d(ν)1]ν ′′′

For some µ′′′, ν ′′′. In particular,

µτ(d(µ′τ)− e1, d(µ′τ)) = [pm + d(µ)1] 6= [pm + d(ν)1] = ντ(d(µ′τ)− e1, d(µ′τ)),

so MCE(µτ, ντ) = ∅.
It remains to show that C∗(Γ) has real rank zero. To do this we apply a powerful

result of Blackadar-Bratteli-Elliott-Kimjian which says that a simple AT algebra has
real rank zero if and only if projections separate tracial states. For this, fix a trace τ on
C∗(Γ). Fix paths α, β ∈ Γ with d(α)1 = d(β)1 = 0 and a path µ such that d(µ)2 = 0,
and suppose that τ(sαsµs

∗
β) 6= 0. Then τ(s∗βsαsµ) 6= 0, forcing s∗βsα 6= 0, so r(α) = r(β).

Since d(µ)2 = 0, each of r(µ) and s(µ) belong to the same Λ0
n, and it follows that

d(α) = d(β), and then s∗βsα 6= 0 forces α = β, and µ is a cycle. Choose m > n such that
|Xm

i,j| > |µ| whenever cmi,j 6= 0. Then

0 6= τ(sαsµs
∗
β) = τ(s∗αsαsµ) =

∑
η∈s(µ)Λ(m−n)e2

τ(sµsηs
∗
η) =

∑
η∈s(µ)Λ(m−n)e2

τ(sη′sµ′s
∗
η)

where each µη = η′µ′ with d(µ′) = d(µ); and this forces η′ = η for all η. By choice of
m, this forces d(µ) = 0. A similar argument applies to show that τ(sαs

∗
µsβ) 6= 0 forces

α = β and d(µ) = 0. The factorisation property and the Cuntz-Krieger relations show
that C∗(Γ) is spanned by elements of the form tαtµt

∗
β and tαt

∗
µt
∗
β, and it follows that if
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traces τ1, τ2 agree on all elements of the form tαt
∗
α, then they are equal. In particular,

projections separate tracial states as required. �

It now follows from Elliott’s classification theorem that C∗(Γ) is classified by its K-
theory.

Theorem 5.5. Let E0 be the directed graph with one vertex un,j for each Λn,j and
|un,iE1

0un+1,j| = |Xn
i,j|/|Λ0

n,i|, and let E1 be the directed graph with one vertex wn,j for

each Λn,j and |wn,iE1
0wn+1,j| = |Xn

i,j|/|Λ0
n+1,j|. Then K0(C∗(Γ)) is the dimension group

associated to the Bratteli diagram E0, and K1(C∗(Γ)) is group-isomorphic to the dimen-
sion group associated to the Bratteli diagram E1.

Proof sketch. Let A := {λ ∈ Γ : d(λ)1 = 0} regarded as a 1-graph. So A1 =
⊔∞
n=1X

n.
The map vi 7→ vi+1 is a bijection of each Xn

i,j and determines an automorphism of A.
It is straightforward to see that Γ ∼= A ×αX N, so Corollary 4.8 implies that C∗(Γ) ∼=
C∗(A)×α̃ Z.

A theorem of Drinen shows that C∗(A) is Morita equivalent to the AF algebra with
Bratteli diagram A. The Pimsner-Voiculescu exact sequence in K-theory then implies
that K0(C∗(Γ)) = coker(1− α̃∗) and K1(C∗(Γ)) = ker(1− α̃∗).

To describe the K-theory of C∗(A), recall that K∗(Mn) = (Z, {0}) with generator [p]
for any minimal projection p. Hence

K1(C∗(A)) = 0 and K0(C∗(A)) = lim−→
⊕
v∈Λ0

n

Z[sv],

with linking maps determined by

[sv] =
∑
α∈vA1

[sαs
∗
α] =

∑
α∈vA1

[ss(α)] =
∑

w∈Λ0
n+1

|vA1w|[sw].

The automorphism α̃ permutes the sw for w in a given Λ0
n,i. So ker(1 − α̃∗) consists

of functions which are constant on cycles. That is

ker(1− α̃∗) ∩
⊕
v∈Λ0

n

Z[sv] =
mn⊕
i=1

Z[Pn,i]

where Pn,i =
∑

v∈Λ0
n,i
sv. Relation (CK4) gives

[Pn,i] =

mn+1∑
j=1

∑
α∈Λ0

n,iA
1Λ0

n+1,j

[ss(α)]

=

mn+1∑
j=1

|Λ0
n,iA

1Λ0
n+1,j|

|Λ0
n+1,j|

[Pn+1,j]

=

mn+1∑
j=1

|Xn+1
i,j |

|Λ0
n+1,j|

[Pn+1,j].

Continuity of K-theory then establishes the formula for K1(C∗(Γ)).
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Similarly, for each n, i, the classes [sv] ∈ C∗(A) where v ∈ Λ0
n,i are all equivalent

modulo the image of (1− α̃∗). Hence coker(1− α̃∗)∩
⊕

v∈Λ0
n

Z[sv] =
⊕mn

i=1 Z[swn,i ] where

(n, i) 7→ wn,i is a fixed choice of representative for each Λ0
n,i. The Cuntz-Krieger relations

for A show that in coker(1− α̃∗),

|Λ0
n,i|[swn,i ] = [Pn,i] =

∑
j

|Λ0
n,iA

1Λ0
n+1,j|[swn+1,j

],

so

[swn,i ] =
∑
j

|Xn+1
i,j |
|Λ0

n,i|
[swn+1,j

].

Continuity of K-theory once again establishes the formula for K0(C∗(Γ)). �

Examples 5.6. (1) For the rank-2 Bratteli diagram Γ with coloured graph

. . .

the graphs E1 and E2 are

E1: . . .

E0: . . .

so we have K∗(C
∗(Γ)) = (Z[1

2
],Z) and hence C∗(Γ) is stably isomorphic to the

2∞ Bunce-Deddens algebra.
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(2) For the rank-2 Bratteli diagram Γ with coloured graph

. . .

. . .

both E0 and E1 are isomorphic to the 1-graph obtained by deleting the loops,
which is a telescope of the Bratteli diagram below.

. . .

. . .

Hence results of Effros and Shen [5] show that the K0-group associated to this

diagram is Z + θZ where θ is the irrational number 1+
√

5
2

. Hence K∗(C
∗(Γ)) =

(Z + θZ,Z2), and it follows that C∗(Γ) is Morita equivalent to the irrational
rotation algebra for rotation θ.

6. Coactions, crossed-products and coverings

The connection between skew products and coaction crossed-products was first estab-
lished for graph C∗-algebras by Kaliszewski-Quigg-Raeburn [10] and was extended to
k-graphs by Pask-Quigg-Raeburn [14].

Definition 6.1. Let Λ be a k-graph, and let c : Λ → G be a functor into a discrete
group G. The skew-product k-graph Λ×c G is given by (Λ×c G)n := Λn ×G with

r(λ, g) = (r(λ), c(λ)g), s(λ, g) = (s(λ), g) and (λ, c(µ)g)(µ, g) = (λµ, g).

It is straightforward to see that (Λ×c G)≤n = Λ≤n ×G.

Example 6.2. Let E be the 1-graph with a single vertex v and a single edge e. The
following are, from left to right, the skew-product graphs for the functors determined
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by c1(e) = 1 ∈ Z, c2(e) = 2 ∈ Z and c3(e) = [1] ∈ Z/3Z.

E ×c1 Z ...

(v, 2)

(v, 1)

(v, 0)

(v,−1)

(v,−2)

...

(e, 1)

(e, 0)

(e,−1)

(e,−2)

E ×c2 Z

...

(v, 2)

(v, 1)

(v, 0)

(v,−1)

(v,−2)

...

(e, 1)

(e, 0)

(e,−1)

(e,−2)

(e,−3)

E ×c3 Z/3Z

(v, [2])

(v, [1])

(v, [0])

(e, [2])

(e, [0])

(e, [1])

Recall that if G is a discrete group, then there is an injective homomorphism δG :
C∗(G) → C∗(G) ⊗ C∗(G) (the spatial tensor product is used if C∗(G) is not nuclear)
defined by δG(s) = s⊗ s for all s ∈ G. A coaction of a discrete group G on a C∗-algebra
A is a nondegenerate injective homomorphism δ : A → A ⊗ C∗(G) which satisfies the
coaction identity

(δ ⊗ idC∗(G)) ◦ δ = (idA⊗δG) ◦ δ.
The coaction crossed-product A×δ G is generated by homomorphisms iA : A→ A×δ G
and iG : c0(G) → M(A ×δ G) such that if qs is the image if the indicator function
χ{s} ∈ c0(G), then qsιA(a) = ιA(a)qt−1s whenever δ(a) = a ⊗ t. For more details on
coactions and their crossed-products, see [4, Appendix A].

Theorem 6.3. Let Λ be a locally convex row-finite k-graph and let c : Λ → G be a
functor into a discrete group. Then there is a coaction δ of G on C∗(Λ) determined
by δ(sλ) = sλ ⊗ c(λ) for each λ ∈ Λ. Moreover, C∗(Λ ×c G) ∼= C∗(Λ) ×δ G via an
isomorphism which carries s(λ,g) to ι(sλ)qg where ι : C∗(Λ)→ C∗(Λ)×δG is the canonical
inclusion, and the qg are the images of the indicator functions χ{g} ∈ c0(G).

Proof. Define t : Λ → C∗(Λ) ⊗ C∗(G) by tλ := sλ ⊗ c(λ). Since c is a cocycle, we have
tv = sv ⊗ 1 for each v ∈ Λ0 and it follows that t satisfies (CK1). If s(µ, g) = r(ν, h),
then g = c(ν)h, and

tµtν = (sµ ⊗ c(µ))(sν ⊗ c(ν)) = sµsνc(µ)c(ν) = tµ

since s satisfies (CK2) and c is a cocycle. So t satisfies (CK2). For λ ∈ Λ, we have

t∗λtλ = s∗λsλ ⊗ c(λ)∗c(λ) = ss(λ) ⊗ 1 = ts(λ)

because s satisfies (CK3) and the c(g) are unitaries. Similarly, for v ∈ Λ0 and n ∈ Nk,∑
λ∈vΛ≤n

tλt
∗
λ =

∑
λ∈vΛ≤n

sλs
∗
λ ⊗ c(λ)c(λ)∗ =

( ∑
λ∈vΛ≤n

sλs
∗
λ

)
⊗ 1 = sv ⊗ 1 = tv.
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The universal property of C∗(Λ) yields a homomorphism δ : C∗(Λ) → C∗(Λ) ⊗ C∗(G)
such that δ(sλ) = tλ = sλ⊗ c(λ). This δ is nondegenerate because increasing finite sums
of the form PF =

∑
v∈F sv form an approximate identity for C∗(Λ) with δ(PF ) = PF ⊗1

for all F , so the δ(PF ) form an approximate identity for C∗(Λ)⊗C∗(G). An application
of the gauge-invariant uniqueness theorem shows that δ is injective. For the coaction
identity, we calculate

(δ ⊗ 1) ◦ δ(sλ) = δ(sλ)⊗ c(λ) = (sλ ⊗ c(λ))⊗ c(λ) = sλ ⊗ δG(c(λ)) = (1⊗ δG) ◦ δ(sλ)
for all λ.

To see that C∗(Λ×c G) ∼= C∗(Λ)×δ G, define u : Λ×c G→ C∗(Λ)×δ G by u(λ,g) :=
ι(sλ)qg. Since the qg are mutually orthogonal, and since the ι(sv) are also, and since the
qg commute with the ι(sv), the map u satisfies (CK1). For (CK2) we calculate

u(µ,c(ν)g)u(ν,g) = ι(sµ)qc(ν)gι(sν)qg = ι(sµsν)qc(ν)−1c(ν)gqg = ι(sµsν)qg = u(µν,g),

so u satisfies (CK2). Also,

u∗(λ,g)u(λ,g) = qgι(s
∗
λsλ)qg = qgι(ss(λ))qg = ι(ss(λ))qg = us(λ,g)

because δ(ss(λ)) = sλ ⊗ e. Hence u satisfies (CK3). Finally, for (v, g) ∈ (Λ ×c G)0 and
n ∈ Nk, ∑

(λ,h)∈(v,g)(Λ×cG)≤n

u(λ,h)u
∗
(λ,h) =

∑
λ∈vΛ≤n

ι(sλ)qc(λ)−1gι(s
∗
λ) =

∑
λ∈vΛ≤n

ι(sλ)ι(s
∗
λ)qg = u(v,g),

so u satisfies (CK4). Thus there is a homomorphism πu : C∗(Λ ×c G) → C∗(Λ) ×δ G.
The universal property of C∗(Λ)×δG ensures that the gauge action γ on C∗(Λ) induces
an action β of Tk on C∗(Λ) ×δ G such that βz ◦ ι = ι ◦ γz and βz(qg) = qg for all z, g.
In particular, βz(u(λ,g)) = zd(λ,g)u(λ,g) for all g. Since the sv go to sv ⊗ 1 under δ, the
u(v,g) are all nonzero, and the gauge-invariant uniqueness theorem implies that πu is an
isomorphism. �

Corollary 6.4. Let Λ be a locally convex row-finite k-graph. Then C∗(Λ) ×γ Tk ∼=
C∗(Λ×d Zk).

Proof. We have Tk = Ẑk, and the action γ of Tk on C∗(Λ) corresponds to the coaction
ε of Zk given by ε(sλ) = sλ ⊗ d(λ). The result therefore follows from Theorem 6.3 �

Lemma 6.5. Let Λ be a locally convex row-finite k-graph. Then C∗(Λ×d Zk) is AF.

Proof sketch. Fix a finite subset F of Λ ×d Zk. Let DF := {m ∈ Nk : (λ,m) ∈
F for some λ ∈ Λ}. Let N :=

∨
DF ∈ Nk, and let F :=

⋃
(λ,m)∈F{(λλ′, p) : m ≤

p ≤ N, λ′ ∈ s(λ)Λp−m}. It is straightforward to check that for (µ,m), (ν, n) ∈ Λ×d Zk,
if (λ, p) ∈ MCE((µ,m), (ν, n)) then p = m ∨ n. Using this and (2.2) one checks that
span{sηs∗ζ : η, ζ ∈ F} is closed under multiplication, and hence a finite-dimensional

subalgebra of C∗(Λ×d Zk) which contains C∗({sµs∗ν : µ, ν ∈ F}). Since C∗(Λ×d Zk) is
the increasing union of the subalgebras span{sηs∗ζ : η, ζ ∈ F}, the result follows. �

Corollary 6.6. Let Λ be a locally convex row-finite k-graph. Then C∗(Λ) is stably
isomorphic to a crossed product of an AF algebra by Zk.
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Proof. Let ε̂ be the dual action of Zk on C∗(Λ)×ε Zk given by ε̂n(ι(sλ)qm) = ι(sλ)qm+n.
By Takai duality [22], C∗(Λ) ∼Me C

∗(Λ) ×ε Zk ×ε̂ Zk. Corollary 6.4 and Lemma 6.5
combine to show that C∗(Λ)×ε Zk ∼= C∗(Λ×d Zk) is AF, and the result follows. �

We finish with a third take on the Bunce-Deddens algebra of type 2∞. We have seen
it as an AT-algebra and as a crossed product of an AF-algebra by Z. Now we will see
it as a coaction crossed product by the profinite group of 2-adic numbers.

Fix a discrete group G and a sequence G = H0BH1BH2B · · · of finite-index normal
subgroups of G. For each n, let Gn := G/Hn. We obtain a projective system

{e} = G0
q1←− G1

q2←− G2 · · ·
of finite groups. Fix a locally convex row-finite k-graph Λ, and a sequence of cocycles
cn : Λ→ Gn such that qn(cn(λ)) = cn−1(λ) for all λ, n. For g ∈ G, we will write [g]n for
the class of g in Gn.

Each Γn := Λ×cnGn is a k-graph, and the map ϕn : Γn → Γn−1 given by ϕn(λ, [g]n) =
(λ, qn([gn])) = (λ, [g]n−1) is a covering. Let Σ be the infinite (k + 1)-graph of Re-
mark 4.10 obtained from the tower of k-morphs Xϕn . For each n, let Pn :=

∑
v∈Γ0

n
sv =∑

v∈Λ0,[g]n∈Gn s(v,[g]n) ∈ C∗(Σ).

Lemma 6.7. We have P0C
∗(Σ)P0

∼= lim−→C∗(Γn) under inclusions satisfying s(λ,[gn]) 7→∑
qn+1([h]n+1)=[g]n

s(λ,[h]n+1).

Proof. For each n ∈ Nk, let Vn :=
∑

α∈X1∗···∗Xn sα. Since the source map on each
X is a bijection, the Vn are all partial isometries with V ∗n Vn = Pn and VnV

∗
n = P0.

The map a 7→ VnaV
∗
n is an injective homomorphism from C∗({sα : α ∈ ι(Γn)}) to

P0C
∗(Σ)P0 (gauge-invariant uniqueness theorem again). Every spanning element of

P0C
∗(Σ)P0 belongs to VnC

∗({sα : α ∈ ι(Γn)})V ∗n for large enough n, so it follows that
P0C

∗(Σ)P0
∼= lim−→C∗(Γn).

To calculate the connecting maps, note that

V ∗n+1Vns(λ,[g]n)V
∗
n Vn+1 =

∑
x,y∈Xn+1

s∗xs(λ,[g]n)sy

=
∑

q([h]n+1)=q([h′]n+1)=[gn]

s(λ,[h′]n+1)s
∗
[h′]n+1

s[h]n+1

=
∑

q([h]n+1)=[gn]

s(λ,[h]n+1)

as required. �

Corollary 6.8. For each n, let δn be the coaction of Gn on C∗(Λ) determined by δn(sλ) =
sλ ⊗ cn(λ). Then

P0C
∗(Σ)P0

∼= lim−→(C∗(Λ)×δn Gn)

under inclusions satisfying sλq[g]n 7→
∑

qn+1([h]n+1)=[g]n
sλg[h]n+1.

Proof. Combine Lemma 6.7 and Theorem 6.3. �

For the following theorem, let G∞ := lim←−Gn be the projective limit group, and let
q∞n : G∞ → Gn be the canonical surjection for each n. We G∞ identify with the set
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of sequences ([gn]n)∞n=1 ∈
∏∞

n=1Gn such that qn+1([gn+1]n+1) = [gn]n for all n. Observe
that the cn : Λ→ Gn determine a cocycle c∞ : Λ→ G∞ by c∞(λ) := (cn(λ))∞n=1.

Theorem 6.9. There is a coaction δ∞ of G∞ on C∗(Λ) satisfying δ∞(sλ) = sλ⊗ c∞(λ)
for all λ. Moreover,

C∗(Λ)×δ∞ G∞ ∼= lim−→C∗(Λ)×δn Gn,

and in particular is Morita equivalent to C∗(Σ).

Proof. More or less the same argument as in Theorem 6.3 shows that there is a coaction
δ∞ : C∗(Λ)→ C∗(Λ)⊗ C∗(G∞)1 satisfying δ∞(sλ) = sλ ⊗ c∞(λ) — nondegeneracy as a
coaction follows from nondegeneracy as a homomorphism by a result of Landstad [13,
Lemma 3.8] because G∞ is compact and hence amenable. Since C0(G∞) = lim−→ c0(Gn),
for each n the map δ[g]n 7→ χ(q∞n )−1([g]n) determines a homomorphism of c0(Gn) into
C0(G∞). Thus Theorem 6.3 implies that t(λ,[g]n) := ι(sλ)ιG(χ(q∞n )−1([g]n)) determines a
Cuntz-Krieger Γn-family in C∗(Λ)×δ∞ G∞, and hence a homomorphism πn : C∗(Γn)→
C∗(Λ)×δ∞ G∞, for each n ∈ N. The universal property of C∗(Λ)×δ∞ G∞ implies that
there is an action β of Tk on C∗(Λ)×δ∞G∞ which fixes the copy of C0(G∞) and satisfies
βz ◦ ι = ι ◦ γz, and it follows that βz ◦ πn = πn ◦ γz for each n. The gauge-invariant
uniqueness theorem therefore implies that the πn are injective.

The universal property of lim−→C∗(Λ) ×δn Gn then gives π∞ : lim−→C∗(Λ) ×δn Gn →
C∗(Λ) ×δ∞ G∞, and π∞ is injective because the πn are all injective. It is surjective
because the χ(q∞n )−1([g]n) span a dense subalgebra of C0(G∞) so the image of π∞ contains
all the generators of C∗(Λ)×δ∞ G∞. Remark 4.10 implies that P0 is full, so the Morita
equivalence of C∗(Λ)×δ∞ G∞ with C∗(Σ) follows from Corollary 6.8. �

Remark 6.10. In fact the continuity of coaction crossed products by projective systems
of finite discrete groups is a general phenomenon [15, Theorem 3.1], but the proof is
more involved.

Example 6.11. Let Λ be the 1-graph with one edge e and one vertex v. Let G := Z
and Hn = 2nZ for all n, so for each n, Gn = G/Hn is the finite cyclic group of order 2n.

1Not MC∗(G) because the projective limit is compact
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Hence G∞ = Z2 the group of 2-adic numbers. Then the 2-graph Σ is

. . .

which is precisely the rank-2 Bratteli diagram corresponding to the 2∞ Bunce-Deddens
algebra as described in Example 5.6(1). By Theorem 6.9 and Lemma 5.1, we have
P0C

∗(Σ)P0
∼= C(T)×δ∞ Z2.
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