LECTURE NOTES ON HIGHER-RANK GRAPHS AND THEIR
C*-ALGEBRAS

AIDAN SIMS

ABSTRACT. These are notes for a short lecture course on k-graph C*-algebras to be
delivered at the Summer School on C*-algebras and their interplay with dynamics at
the Sophus Lie Conference Centre in Nordfjordeid, Norway in June 2010. They are not
even remotely comprehensive of the work that many authors have done on k-graphs,
nor are all details even of the material covered included. In addition, there are likely
to be plenty of typo’s and possibly more serious errors, and I would be grateful if you
could pass any you find on to me.

These notes are also not comprehensively referenced, though I have tried to attribute
major results and definitions to the people who proved them. There are many people
who have been involved in the area who have not been mentioned; I apologise for my
oversights.

I thank the organisers of the conference — Toke Carlsen, Magnus Landstad, and
Nadia Larsen — for organising an exceptionally interesting and enjoyable academic
program, and a very smooth-running and congenial meeting in general.

1. HIGHER-RANK GRAPHS, COLOURED GRAPHS AND SKELETONS

In these notes, a directed graph is a quadruple (E°, E',r, s) where E°, E! are count-
able (discrete) sets, and r, s are maps from E' to E°. A path in E is a sequence aj . . . ay,
with each o; € E' and with s(a;) = r(a;41) for all 2. We write E™ for the collection of
paths of length n in E. We regard the set E* of all paths as a category with objects E°
and composition given by concatenation of paths.

Our convention is that N is the collection of natural numbers including 0, and we
write N¥ for the abelian semigroup of k-tuples of natural numbers under coordinatewise
addition. The canonical generators of N* are {e;,...,ex}, and we denote the i*! coor-
dinate of n € N¥ by n;; so n = (nq,ng,...,n,). We give N¥ the standard lattice order
som < n if m; < n, for all i. For m,n € N¥, we write m V n for the coordinatewise
maximum of m and n and m A n for the coordinatewise minimum of m and n.

Definition 1.1 ([II, Definitions 1.1]). Let k& € N. A graph of rank k or a k-graph is
a countable category A equipped with a functor d : A — N*_ called the degree functor
satisfying the following factorisation property:

for all A € A and m,n € N¥ such that d(\) = m + n there are unique
elements p € d~*(m) and v € d~'(n) such that A = pw.

Lemma 1.2. Let A be a k-graph. Then d=(0) = {id, : 0 € Obj(A)}.
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Proof. 1f 0 € Obj(A), then
d(id,) = d(id, id,) = 2d(id),

forcing d(id,) = 0. Thus {id, : 0 € Obj(A)} C d=1(0).
For the reverse inclusion, fix A with d(\) = 0. We have d(\) = 0+ 0, and

idcod()\) A=A=A iddom()\) .
Uniqueness of factorisations therefore forces A = idgom(n)- O

Notation 1.3. We will adopt the following notation throughout these notes.

o A" :=d !(n).

° 7’()\) = idcod()\) € A% and S()\) = iddom()\) e A,

e For F C A and a € A, we write aF = {aX : A € E,;r(\) = s(a)}, and
FEa = {\a : A € E,s(\) = r(a)}. In particular, for v € A® and n € N¥,
vA" ={A € A:r(\) =vand d(\) =n}.

e When m < n <[ =d()\), we write A(0,m), A(m,n) and A(n,!) for the unique
paths of degree m, n — m and | — n such that A = \(0, m)A\(m,n)\(n, ).

We describe k-graphs in terms of their k-coloured skeletons. Many of the results
in this section were originally proved by Robbie Hazlewood in his honours thesis, and
subsequently sharpened and expanded in [g].

Definition 1.4. Let & € N. A k-coloured graph is a directed graph (E°, E',r, s)
together with a colour map c¢: E* — {1,... k}.

Given a k-coloured graph FE, we extend the colour map c to a functor ¢ : E* — F};
so c(a) = c(aq)c(az) ... c(ajq)) for a € B

Example 1.5. Fix k¥ € N and m € N*. The coloured graph F},, has vertices Eg’m =
{n e N*:n <m}, and edges E},, = {e} :n,n+e; € EY .} with structure maps

r(el)=n, sE})=n+e, and c(e) =1.

7 7 7

For example, Es 32y could be drawn as follows:
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A graph morphism ¢ from a graph E to a graph F is a pair of maps ¢° : E® — FY and
' E' — F! such that r(¢'(e)) = ¢°(r(e)) and s(¢'(e)) = ¢°(s(e)) for all e € E'. We
will often simply write ¢ for each of ©° and !. A coloured-graph morphism between
k-coloured graphs is then a graph morphism which preserves colour.
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For distinct 4,5 < k, an ij-square in a k-coloured graph F is a coloured-graph mor-
phism ¢ : By c.qe; — E.

Definition 1.6. A complete and associative collection of squares for a k-coloured graph
E is a set C of squares in F such that

(1) for each ij-coloured path fg € E? there is a unique ¢ € C such that ¢(&¥) = f
and p(ej’) = g; and
(2) if we write fg ~ ¢'f" whenever there is a square ¢ such that
ee)=f ) =9 ¢E)=¢ and ()= [,
then if fgh is a tri-coloured path and
Jg~agifi, fih~hifa,  giha ~ hage,
gh ~ hl 1’ fhl ~ h2f1 and flgl ~ 92.]027
then fo = f2, go = ¢ and hy = h?.
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Given a k-coloured graph E and a coloured-graph morphism ¢ : Ej,, — E, we say
that an ij-square ¢ in E occurs in ¢ if there exists n € N¥ such that n +¢; +¢; <m
and

p(e) = (), p(e]™) = Y(ef),
p(e]) = v(ef)  and p(e™) = (ef?).

If F is a k-coloured graph and C is a complete and associative collection of squares
in F, we say that a coloured-graph morphism ¢ : Ej,, — E is C-compatible if every
square which occurs in ¢ belongs to C.

The next three results first appeared in an honours thesis by Robbie Hazlewood

[?7], and were subsequently reworked in [8]. The first of them is the key step in our
construction of a k-graph from a coloured graph.

Lemma 1.7. Let E be a k-coloured graph and let C be a complete and associative
collection of squares in E. Let 7 : Ff — N* be the homomorphism satisfying 7(i) = e;.
Then for each path o = ayy ...« € E, there is a unique C-compatible coloured-graph
morphism ¢ : Ej (c(a)) — £ such that

(1) Pl ) =ans foralll < al.

Proof. We proceed by induction on |a|. If || = 0 then the assertion is trivial.
Now fix n > 1 and suppose that there is a unique ¢ satisfying (|1.1)) whenever |a| <
n €N, and fix a € E™. Let i := ¢(ay,), and let m := 7(c(a)).
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By the inductive hypothesis, there is a unique C-compatible coloured-graph morphism
Y Egm—e; — E which is traversed by oy ...,—1. For each j € {1,...,k}\ {i} such
that m; # 0, that C is a complete collection of squares ensures that there is a unique
vl e c7(j) and 37 € ¢ (i) such that ¢(e] "7 )y ~ 7B
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For each j, the inductive hypothesis applied to {27 for any traversal & of 1| Elomner—e

. . J
yields a unique C-compatible morphism M traversed by &v7.
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We claim that for distinct p, g, the morphisms A\ and A? agree on the intersection of

. : . m—ep—eq—e;
their domains, namely Ej ;,—c,—e,. To see this, let 779 := X(g;” ™ ™). Then 777 =

NP(g]"P7%7%) because the two are the paths h? and hy obtained from Definition
with
(1.2) f=leg ™), g=1(eg %) and h=a,
Hence each of 7| Etn—ep-eq and M| Etn—ep-eq is traversed by (774 for any traversal ( of
¢|Ek,m—ep—eq—ei. The inductive hypothesis therefore gives

p — \¢
(13> )\ |Ek,mfepfeq - )\
Each A agrees with 1 on the intersection of their domains by the inductive hypothesis
and the definition of the M. Since Ej, = (Umﬁéo E,%ym_ep> U{ep @ :m, # 0},

’Ek,mfepfeq :
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equation (1.3 implies that there is a well-defined coloured-graph morphism ¢ : Ej ,,, —
E determined by

<'0|Ek,m—ei = w
¢leg,_., = A" whenever p # i and m,, # 0,

m—e;

e(e"™ ) =, and
w(ey %) =" forall p# i with m, # 0.

Every square which occurs in ¢ either occurs in one of the AP or occurs in the cube
kP4 traversed by the path fgh of for some p, g. Since the A\’ and the xkP¢ are all
C-compatible, it follows that ¢ is also. That the 5P and A’ were uniquely determined by
requiring that all squares occurring in them belonged to C implies that ¢ is the unique
C-compatible morphism traversed by «. 0]

Corollary 1.8. Let E be a k-coloured graph, and let C be a complete and associative
collection of squares for E. If

o: By — E and Y By, — E

are C-compatible coloured-graph morphisms such that p(m) = 1(0), then there is a
unique C-compatible morphism () : Egpin — E such that

(p)(€Y) = p(el)  whenever p+e; < m, and

1

- (p)(e?) = (el™™)  whenever m < p < m+n —e;.

Moreover, this defines an associative partial multiplication on the set

Ape = U {¢ : Ex.m — E|¢ is a C-compatible coloured-graph morphism}.

meNk

Proof. Fix paths o and a¥ in E which traverse ¢ and 1. Then Lemma implies
that there is a unique C-compatible coloured-graph morphism ¢ traversed by a®a¥.
The uniqueness assertion of Lemma implies that 1 satisfies . Moreover, any
coloured-graph morphism 7 satisfying is traversed by a®a¥ and hence another
application of uniqueness from Lemma implies that m = @.

Associativity follows from associativity of concatenation of paths in F. O

Theorem 1.9. Let E be a k-coloured graph, and let C be a complete and associative
collection of squares for E. Let A = Agc be as in C’omllary and define d : A — N¥
by d(p) = m if dom(p) = Eg,m. Then A is the unique k-graph such that A% = ¢7(i)
for each i and fg=¢'f" in A if and only if fg ~ ¢'f" in E.

Proof. Corollary shows that A is a category, and it has A% = ¢71(i) and fg = ¢'f’
whenever fg ~ ¢'f in E by definition. To see that A is a k-graph, we must verify the
factorisation property. This follows from Lemma and uniqueness of factorisations of
paths in F.

For uniqueness, observe that if I' is a k-graph with the given properties, then each
v € T' determines a C-compatible coloured-graph morphism ¢, by ¢, () = a where
a is the unique path satisfying v = v'ay” with d(7') = m, d(a) = €; and d(y") =
d(y) —m — e;. O
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Example 1.10. The associative condition is necessary in three or more dimensions as
is demonstrated by the following three-coloured graph. The example is due to Jack
Spielberg, though he has not published it himself — it appeared with his permission in
[12, Examples 5.15(ii)]

There is a unique complete collection of squares in this graph, but the collection is not
associative as can be seen by chasing through the possible factorisations of the path

fah.

2. k-GRAPH C*-ALGEBRAS AND THE GAUGE-INVARIANT UNIQUENESS THEOREM

The results on C*-algebras in this section are taken from [19], though the germ of the
idea of using ultrafilters as infinite paths in a k-graph is due to Exel [6].

A k-graph is row-finite if |[vA"| < oo for all v € A® and n € N*. Tt is locally convex
if whenever p € A% and v € A% with i # j and () = r(v), we have s(u)A% # () and
s(v)A“ £ 0.

Pictorially, the graph on the left below is the basic example of a 2-graph which is not
locally convex, and the picture on the right illustrates one way to extend the example
on the left into something which is locally convex.

—

*
I

I

I

I

1

I

|

Y
®

R

0d---=-==--0
=

|

T



k-GRAPH C*-ALGEBRAS 7

Remark 2.1. If A is locally convex, then a straightforward induction shows that if
mAn =0and g € A and v € A" with r(u) = r(v), then s(p)A™ and s(v)A™ are
nonempty.

We write AS" for the set
AS"={NeA:dN\) <nand d\); <n; = s(A\)A% = (}.

Lemma 2.2. Let A be a locally convex k-graph. Fiz m,n € N*. We have AS(m+7) =
ASTAST,

Proof. If 1 € AS™ and v € AS", then certainly d(uv) < m + n. Suppose d(uv); <
(m+n);. There are two cases to consider: d(v); < n; or d(u); < m;. If d(v); < n;, then
s(uv)A% = s(v)A% = (). On the other hand, if d(u); < m;, then s(u)A% = @, and then
s(uv)A% = s(v)A% = () by the factorisation property. So ASTAS" C AS(m+n),

Now suppose that A € AS("*) Let m’ := m A d()\), and let n’ := n A (d(\) —m').
It is straightforward to check that m’ +n' = (m +n) Ad(X). Let = A(0,m’). Clearly
d(p) < m and d(v) < n. If d(v); < n; then d(A\); < (m' +n); < (m + n);, and
hence s(v)A% = s(A\)A% = (), giving v € AS". Now suppose that d(u); < m;. Then
d(p); = d(X\), so d(v); = 0. Moreover, d()\); < m; < (m + n); whence s(A\)A% = 0. Tt
then follows from Remark [2.1| that r(v)A% = 0. So p € AS™. O

The following definition of a Cuntz-Krieger A-family, due originally to Yeend, is the
one suitable to locally convex row-finite k-graphs. However, it is very closely modelled
on Kumjian and Pask’s original definition for row-finite k-graphs with no sources. Like-
wise, our analysis in this section leading up to the gauge-invariant uniqueness theorem
largely comes from [I9] but is heavily based on Kumjian and Pask’s seminal work in
[11], Section 2].

Definition 2.3 ([19, Definition 3.3]). Let A be a locally convex row-finite k-graph. A
Cuntz-Krieger A-family in a C*-algebra B is a function t : A — B, A — t, such that

(CK1) {t, : v € A%} is a set of mutually orthogonal projections;
(CK2) t,t, =t,, whenever s(u) = r(v);

(CK3) tt, =ty for all 4 € A; and

(CK4) t, = > cppzn tat for all v € A” and n € N*.

We write C*(t) for C*({t) : A € A}).

To give an example of a Cuntz-Krieger A-family, we introduce filters in k-graphs.
The idea of using filters and ultrafilters to construct representations of combinatorial
objects such as k-graphs is due to Exel in the context of inverse semigroups, though the
procedure is greatly simplified in our setting. To introduce filters, we need the notion
of a minimal common extension of paths in A.

Definition 2.4. Let A be a k-graph, and let pu,v € A We say that X\ is a minimal
common extension of p and v if d(\) = d(u) V d(v) and A = pp' = v/ for some
v € A We write MCE(p, v) for the set of all minimal common extensions of p and
v.

A filter of a k-graph A is a nonempty set x C A such that
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(F1) if A € z and A\ = py/, then p € z; and

(F2) if p, v € x then MCE(u, v) Nz # 0.
It follows that if z is a filter of A, then A° Nz contains a unique element 7(x), and also
that if u, v € x then there is a unique element p V, v of MCE(u, v) which belongs to x.
__An ultrafilter of A is a filter which is maximal with respect to containment. We write
A for the set of filters of A, and A for the set of ultrafilters of A.

Lemma 2.5. Let A be a locally convex row-finite k-graph, and fit A € A. Then there
exists an ultrafilter x of A such that A € A.

Proof. Let X be the collection of filters of A which contain . Since {A\(0,p) : p < d(N)}
is a filter, X is nonempty. Moreover, if C' is an ascending chain in &), then z¢ :=JC
is itself an element of X, so every chain has an upper bound. Hence Zorn’s Lemma
implies that X\ has a maximal element. Elements which are maximal in X are also
maximal in _/A\oo because filters which do not belong to X, do not contain A\, and so
cannot dominate elements of X). O

Lemma 2.6. Let A be a row-finite locally-convex k-graph. Let x € A and fix X € x and
p € Ar(z). Then

(1) M x:={a: da€x} and p-x:={0: AN px # 0} are filters;

2) A-(Az)=z=p" (n-2)

(3) If = belongs to A, then so do \* - x and p - x.

Proof. (1) If & € A*x and a = B/ then A\fa € x and then (F1) forces AF € = and hence
el -z Ifa€pu xand o=, then ) # aANpx C BANpuz, so B € p-x. So N -z
and p - x satisfy (F1).

For (F2), suppose that a, 3 € A\* - z. Then Aa V, A\ belongs to MCE(Aa, AB) Nz =
AMCE(a, ) Nz. Hence MCE(a, B) N A* - x # 0. If a, 3 € p - x, then there exists
up' € x such that uy’ = ao = BB for some o/, 3. Use the factorisation property to
write pp' = 1) where d(7) = d(«) V d(). Then 7 € MCE(«, ) and 7A N pz # 0, so
7 € MCE(a, ) N - .

(2) We calculate

a€XN-(N2) <= aANAXA -x)# 0D
— aAN{\G:2\gex}#D
<« aANz #0.
Similarly, B € p* - p-x < pb e pu-z < pubANur 40 < <= PANz #
) < pBeux.

(3) Suppose that A*z C y € A. Then # = A=A -2 C A-y, so A-y = z and then
y=A-X-y=X\-z Similarly for p - x. O

Lemma 2.7. Let A be a locally convex row-finite k-graph. If x € Ao and n € N*, then
r(z)AST N # 0.

Proof. Fix an increasing cofinal subsequence (1;)72, of = such that o = r(z). For each
i, each a € s(u;)AS", and each j < i, Lemma implies that there is a unique [ €
s(a;)AS™ such that ;a0 € pjBA. Since each s(u;) A= is finite, we may inductively choose



k-GRAPH C*-ALGEBRAS 9

@; € s(u;)A=" such that p;a; € pja;A whenever j < i, and such that p;a;A Ny AS" is
nonempty for infinitely many (and hence all) [ > 1.
The set y := {6 € A : pya; € BA for some i} is a filter of A which contains z. Since

r is an ultrafilter, y = z. Since o € y by definition, and since ag € r(x)AS", the result
follows. 0

Example 2.8. Let A be a locally convex row-finite k-graph, and let H := 52(7\00) with
canonical orthonormal basis {£, : © € A }. For A € A, define
TA£$ = Xl‘(s()‘))é)\m
Routine calculations show that T} is a partial isometry on H such that
156 = Xz (MN)éxas S0 I\T5 = projm{fz:)\Ex} .

Further calculations show that the map T : A — T) is a Cuntz-Krieger A-family in
B(H) (it satisfies (CK4) by Lemma [2.7). In particular that for any k-graph A there
exist Cuntz-Krieger A-families in which every ¢, is nonzero.

Lemma 2.9. Let A be a locally convex row-finite k-graph and let t be a Cuntz-Krieger
A-family. Then for p,v € A, we have

MCE(y, v) = pAS@VAe)=dw) q ), AS(dm)Vd@)—dw)

(2.1) AV =) (), () Vi) (o)

and

(2.2) tht, = > tuth.

pp!' =vv' eMCE(p,v)
Proof. To establish ([2.1]) first note that

by definition. For the reverse inclusion, note that A € yANvA = d(A) > d(p) Vd(v).
To establish ([2.2), let m := d(u), n := d(v) and use (CK4) to calculate

(2.3) trt, =ttt tot, = t;( S bt ) ( > tl,l,/tl,,/)ti.
' eAS(mvn)—m v eAS(mVn)—n

By Lemma 2.2 each uu/,vv € A<mV”, so another application of (CK4) ensures that
each t,,,t Aot = Opw ptuwt e Hence

tuty = t;( > tAt;‘) #
ACUAS (V) —m Ay A< (myn)—n

= > tttutytt, by 21)

up!' =vv’' EMCE(p,v)

— > ttl

up' =vv' EMCE(p,v)

by (CK3). O

%74

ppt! uu
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Corollary 2.10. Let A be a locally convex row-finite k-graph and let t be a Cuntz-Krieger
A-family. Then C*(t) = span{t,t} : p,v € A}.

Our proof of the following result is taken more or less directly from Raeburn’s notes
on graph algebras [I8] from the NSF-funded CBMS conference held at the University
of Towa in 2004.

Proposition 2.11 (c.f. [I8] Proposition 1.21]). There is a C*-algebra C*(A) generated
by a Cuntz-Krieger A-family s which is universal in the sense that each Cuntz-Krieger
A-family t induces a homomorphism m; : C*(A) — C*(t) satisfying w(sx) = tx for all
A € A. Moreover, each sy is nonzero.

Proof. Let Ax A = {(p,v) € AxXA:s(u) =s(v)}. Let Ay := c.(AxsA) and for each p, v,

let §(,.) € Ay denote the indicator function. Define * : Ay — Ay by f*(u,v) = f(v, ),
and define a multiplication on Ay by extending the assignment

O(u)O(n,¢) > Ouv’ Cor')

vv'=nn’ eEMCE(v,n)

to a bilinear map. For each Cuntz-Krieger A-family ¢ on Hilbert space, the partial
isometries t,t; satisfy the same relations as the ¢,,, so each such family determines a
representation 7 of Ag such that m,(d(,,)) = t,t;, for all p,v

Each t,t;, is a partial isometry, so its norm is less than or equal to 1. Hence for f € A,

Im(Al =] X Frmon)|| < > anlltll = 32w

(p,v)EA*A (p,v)

Hence || fllo := sup; , ck A-tamity |7:(f) || defines a seminorm on Ag. Let I :={f : ||fllo =
0}, and let A := Ay/I. Let C*(A) be the completion of A in the norm induced by
| - llo, and let sy := 0(xsr)) + 1 for all A\. Then A is a C*-algebra, and is universal by
construction.

Since the Cuntz-Krieger family 7" of Example[2.8|consists of nonzero partial isometries,
the universal property of C*(A) ensures that the s, are nonzero as well. O

Remark 2.12. Let A be a locally convex row-finite k-graph and let ¢t be a Cuntz-Krieger
A-family. Fix pu,v € A with s(u) = s(v) = v, and suppose that ¢, # 0. Then

Ity 1* = Ittytutyll = Ntutll = It l* = 1580 = [t # 0.
In particular, each s,s} # 0 in C*(A).

For each z € T*, the map A — 2¢Ms, is a Cuntz-Krieger A-family, so the universal
property of C*(A) gives an endomorphism

v, : C*(A) — C*(A)  such that 7,(sy) = 2¢Vs), for all \.

Since Yy, © V2(S2) = Yw:(sa) and y1(sy) = sy for all A, each ~, is an automorphism of
C*(A) and z — 1, is an action of T*. If 2, — z, then ., (s,s%) — 7.(s,s;) for all u,v
and then an $ argument shows that v is Strongly continuous. It is then standard (see, for
example, [18, Proposition 3.2]) that ®¥(a) := [1, 7:(a) dz defines a faithful conditional
expectation from C*(A) to C*(A)Y := {a E C*(A) ( ) = a for all z € T*}.
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In the proof of our next main result, we shall need the following uniqueness theorem
for C*-algebras generated by matrix units. Given a set X, a family of matrix units
over X in a C*-algebra A is a collection of elements {6, , : x,y € X} C A such that
0y, =0y and 0, .0, . = 0,40, . for all w,z,y,2 € Z.

Lemma 2.13. Let X be a countable set. There is a C*-algebra My generated by a
family of matriz units over X which is universal in the sense that given any other family
{wsy 1 @,y € X} C B of matriz units over X, there is a homomorphism m,, : Mx — B
such that m,(0,,) = wa,y for all z,y. Moreover Mx is simple.

Proof. If {w,, : x,y € X} is a family of matrix units, then the relations imply that
the w,, are projections, and hence that the w,, are partial isometries. An argument
similar to that of Proposition shows that there is a C*-algebra Mx with the desired
universal property.

For any finite subset F' of X, the set Mp := span{f,, : =,y € F} is a finite-
dimensional C*-subalgebra of My, and My is the direct limit of these Mpg. Since
injective C*-homomorphisms are isometric, a homomorphism of My which is injective
on each My is isometric on each Mp and hence on the closure of their union. So it
suffices to check that each My is simple. Suppose that 7 is a homomorphism of Mpg
and 7(3_,  cp Az ybey) = 0 and that a,, # 0 for some z,y € F. Then for all w, z € F,

we have {
x,Y z7y€F
and hence 7 is the zero homomorphism. O

Proposition 2.14. Let A be a locally convexr row-finite k-graph. Then

(1) C*(A)" = Spam{s,s; - d(u) = d(v), s(s) = 5(0)};
(2) C*(A) =lim . D,cno men, SPAN{S,S) v € AST A0}
(3) Fach span{s,s; : p,v € AS"NA™0} = Mpy<nqpmy,-

Proof. For pu,v € A, we have

B7(s,57) = / ), o _ Jsust ifd(w) = d(w)
n Tk e 0 otherwise.

Since ®7 0 7 = &7 and ®7(C*(A)) = C*(A)?, this proves (I).
Since p, v € AS"™ implies 81,50 = OpuSs(u), we have

span{s,s:: v € A"} = @ span{s,s: : p,v € AS" N A"}
veEAO m<n

for each n,v,m. If n < p, and p,v € AS" with s(u) = s(v), then

Sus, = Z Sursyy € Span{sysy : 1, € AP}

AEs(p)ASP—n

by Lemma [2.2] Hence

span{s,s. : u,v € AS"} C span{s,s; : p, v € AP},
and follows.
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Fixn € N*, m <nand v € A°. For u,v,0,7 € AS" N A™v, we have (s,s3)* =

sysy, and s,s,8,s¢ = 0,¢s,s;. Remark [2.12] therefore implies that the s,s; form a
family of nonzero matrix units indexed by A=" N A™wv, and the result then follows from
Lemma [2.13] O

Proposition 2.15. Let A be a locally convex row-finite k-graph. Suppose that t is
a Cuntz-Krieger A-family such that each t, is nonzero, and suppose that there is a
linear map W : C*(t) — C*(t) such that V(t,t}) = Sa).dw)tuts for all p,v. Then
m : C*(A) — C*(t) is injective.

Proof. By Remark [2.12) whenever s(u) = s(v), we have t,t} # 0. Since Mp<nqpm,
is simple, Proposition implies that 7; is injective, hence isometric, on each
span{s,s; : u,v € (AS" N A™)v}. So Proposition implies that m; is isomet-
ric on C*(A)?. Since ¥ o, = m 0 &7, and since ®7 is faithful on positive elements, we
have

m(a) =0 = ¥Y(m(a*a)) =0 = m(P"(a"a)) =0 = P7(a"a) =0 = a=0.
0J

The following is one of the many generalisations to date of an Huef and Raeburn’s
gauge-invariant uniqueness theorem for unital Cuntz-Krieger algebras, and its proof like
all the others is more or less identical to the one originally given by an Huef and Raeburn
[9, Theorem 2.3]. It will be the single most useful result in our repertoire later in the
course, and plays a similar role in the theory of k-graph algebras in general.

Corollary 2.16 (The gauge-invariant uniqueness theorem). Let A be a locally convex
row-finite k-graph. Suppose that t is a Cuntz-Krieger A-family such that each t, is
nonzero and such that there is an action 3 of TF on C*(t) such that B.(t\) = ¥ty for
all \. Then m; is injective.

Proof. The map ¥ : a +— [ (.(a)dz from C*(t) to C*(t) satisfies the hypotheses of
Proposition [2.15] O

3. THE CUNTZ-KRIEGER UNIQUENESS THEOREM AND SIMPLICITY

The formulations of aperiodicity and cofinality used in this section are due to Lewin.
The aperiodicity condition, in particular, is the latest refinement of a condition originally
given by Kumjian and Pask which has since been re-cast and sharpened by many authors
including Raeburn-S-Yeend, D. Robertson, and Shotwell.

Definition 3.1. We say that a k-graph A is aperiodic if, for all p, v € A with s(u) = s(v),
there exists 7 € s(u)A such that MCE(ur, v7) = 0.

The factorisation property implies that MCE(u, v) # () if and only if uA NvA # 0.

Lemma 3.2. Let A be a k-graph, and fix v € A° and a finite subset H of Av. Then
there exists T € vA such that MCE(ur,v1) =0 for all p,v € H.

Proof. We proceed by induction on H. If |[H| =1 there is nothing to do.
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Suppose there exists 7 with the desired property whenever |H| < n, and fix H C Av
with |H| = n. Let A be any element of H and let G := H \ {A\}. By the induc-
tive hypothesis there exists 7y such that MCE(ur, v7) = 0 for all y,v € G. Enu-
merate G = {1, ..., 1,1} and iteratively choose paths 7; € A such that for each i,
MCE((pti4170 - - - 75)Tin1, (A707:)Tix1) = 0. Then 7 := 7971 ... 7,1 has the desired prop-
erty: if u,v € G, then

MCE(pur, vr) C proA NvreA = 0,
and if u = p; € G, then
MCE(u7, A\;) C piTo ... AN Ao ... ;A = 0. dJ

The following theorem is a generalisation of Cuntz and Krieger’s original uniqueness
result theorem for the C*-algebras Q4 associated to {0, 1}-matrices A [2]. Indeed, the
proof still retains many elements of Cuntz’s original analysis of O,, [1].

Theorem 3.3 (The Cuntz-Krieger uniqueness theorem). Let A be a locally convex row-
finite k-graph. Suppose that A is aperiodic. Lett be a Cuntz-Krieger A-family such that
ty # 0 for all v € A°. Then m, is injective.

Proof. We aim to apply Proposition [2.15 It suffices to show that for any finite F* C A
and any collection of scalars {a,, : p,v € F},

H Z bty || < H Z O
F puveEFR

JTR”

d(u)=d(v)
for this implies that there is a well-defined linear map W satisfying W(¢,t;) = 64(u),dw)tuts
for all p, v.

Let n := \/epd(N). Then 3 pau,tut; € span{t,t; : p,v € AS"} by Proposi-
tion . Fix € > 0. By Proposition again, there exist v € A and m < n
such that the strict-topology limit

Py = > tuth

AEASTNA™Y
|5 =R 3 awtitirmfi<e
F

TRZS n,veF
d(p)=d(v) d(p)=d(v)

Since A is row finite, FANAS"NA™ is finite. Since d(u) # d(v), we have that uy', vV’ €
A™ implies d(y') # d(v') and hence p/ # /. Hence Lemma (3.2 implies that there exists
7 € vA such that whenever pu,v € F with d(u) # d(v), and pp/,vv’ € AS" N A™v, we
have MCE(p/7,v/7) = (). Let P be the strict-topology limit

P = Z turthe < Py
AEASTNA™Y
We have P, ,.span{t,t; : p,v € F}P,, C span{t,t{ : n,( € A= N A™v}. By
Proposition , tyty +— O, ¢ determines an isomorphism

span{t,t; : n, ¢ € AS" N AT} = K(C(AS" N A™)).

)

satisfies
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Since PtytiP = t,,t7, for alln, ¢ € A" N A™p and since the tyrt7, also form a family of
nonzero matrix units, compression by P is an injective C*-homomorphism, and hence
isometric on span{t,t{ : n,( € A= N A™p}. In particular,

HP > au,ytut;PH = ‘ Pom Y aml,tutiPme = H Qptuts]].
w,veF n,veF w,veF
d(u)=d(v) d(u)=d(v) d(=d(v)
Moreover, if u, v € F with d(p) # d(v), then
Pt t:P = > tuge ottt = > R R |
pp! wv' EASPNAMY pp! wv' EASPNAMY

by choice of 7. Hence

H S aututy|| <P awtutiPH +e
u,veF wvel
d(p)=d(v) d(p)=d(v)
=P > au,ytﬂt’;PH +e
n,veF
<Y auutats| e
u,veF
Letting ¢ — 0 we obtain the desired norm inequality. 0

Corollary 3.4. Let A be a locally convex row-finite k-graph. The following are equivalent
( ) A is aperiodic;
) each nontrivial ideal of C*(A) contains s, for some v € A°.

Proof (1) (2) is the Cuntz-Krieger uniqueness theorem.

For ({2) (1) we prove the converse. Suppose that there exist distinct pu,v € A
such that MCE (ut,vT) # 0 for all 7 € s(u)A.

We claim that an ultrafilter x of A contains g if and only if it contains v. To see
this, it suffices by symmetry to show that p € x implies v € x. Fix an ultrafilter x
such that p € z. Fix a cofinal sequence (p;)32, of « such that py = p. For each i,
w; = pt; for some 7; € A. By assumption, MCE(u;,vr;) # 0 for all . For j < i,
we have MCE(ur;, v7;) C MCE(ut;, v7;)A. Since each MCE(u;, v7;) is finite, we may
inductively choose 7; € MCE(ut;, v7;) such that v; € ;A for all j < ¢, and such that
A NMCE(um, vr) # 0 for infinitely many, and hence all, [ > . Let y ={a € A:v; €
aA for some j}. Then y is a filter. We have  C y because the u; were cofinal. Hence
y = x. Since v € y by definition, we conclude that v € x. This proves the claim.

By the preceding paragraph, the Cuntz-Krieger A-family 7" of Example satisfies
1,T; =T,T;. Moreover, T, ¢ ker(rr) for all T'. So it suffices to show that s,s; # 5,57,
We have s,s}, # 0 by Remark [2.12] Since MCE(u, v) # 0 and p # v, we have d(u) #
d(v). Hence there exists z € T* such that 24(W~4") = —1. Now

(L= 72)(sus), — sus,) = 25,8, # 0

* * 1
and hence s,s}, # 5,5, as required. O




k-GRAPH C*-ALGEBRAS 15

Definition 3.5. We say that a locally convex row-finite k-graph A is cofinal if, for all
v,w € A% there exists n € N¥ such that wAs()\) # 0 for all A € vA=™.

Proposition 3.6. Let A be a locally convex row-finite k-graph. The following are equiv-
alent

(1) A is cofinal;

(2) no proper ideal of C*(A) contains s, for any v € A°.

Proof. (1) = (2)). Fix an ideal I and a vertex w such that s, € I. Fix v € A°. Since
A is cofinal, there exists n € N¥ and paths {py : A € vAS"} such that uy € wAs()\) for
each A\ € vA=". Hence

Sy = Z SxS) = Z S\, SwSus Sy € 1.
A€vAsn AEvAST

2) = . We prove the contrapositive. Fix v,w € A? and suppose that for each
n € NF there exits A € vAS" such that wAs(\) = 0. As before, we may inductively
choose paths p, € vA=" such that u, € p,,A for all m < n and such that for infinitely
many (and hence all) p > n there exists n € p, A N ASP such that wAs(n) = 0. The
set © = {a : u, € nA for some n} is a filter. It is an ultrafilter because if 5 ¢ x, then
tas) 7 B3, and then since 3, jq(s) € A=9P) we have MCE(pqep), 8) = 0, and so there is
no filter containing x which also contains 3. Let

Xo = {z € Ao 1 wAs(A) = 0 for all \ € z}.

Then (%(X,,) C (2(As) is invariant for the Cuntz-Krieger A-family 7' of Example , SO
Sy := T, (x,) determines a Cuntz-Krieger A-family S with S,, = 0 and S, # 0. Hence
ker(mg) is a proper ideal containing a vertex projection. 0

The following corollary, as stated, is due to D. Robertson. In its most general form,
for finitely aligned k-graphs, it was first proved by Shotwell [21, Theorem 4.5].

Corollary 3.7 ([20, Theorem 3.4)). Let A be a locally convex row-finite k-graph. Then
C*(A) is simple if and only if A is aperiodic and cofinal.

Proof. Suppose that A is aperiodic and cofinal, and fix a nontrivial ideal I of C*(A).
Then Corollary implies that s, € I for some v € A°, and then Propositionimplies
that I = C*(A). For the converse observe that if A is not cofinal, then Proposition
yields a nontrivial proper ideal of C*(A), and if A is not cofinal, then Corollary does
the same job. ([l

4. CONSTRUCTIONS OF k-GRAPHS

Constructions of (k+1[)-graphs from k-graphs have appeared in many contexts begin-
ning with the cartesian product construction of Kumjian and Pask, and including many
authors since — we shan’t list them here, but we shall see a number of specific examples
later in these notes. The notion of a k-morph was introduced by Kumjian-Pask-S as a
unifying framework for these constructions.

Definition 4.1. A k-morph between k-graphs A and I' (or a A-I'-morph for short) is
a countable set X equipped with maps r : X — A% and s : X — I'Y and a bijection
0 : Xg#.I' — Agx. X such that whenever 0(x,~) = (\,y) we have
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(M1) d(\) = d(7);

(M2) r(A) =r(x);
(M3) s(7) = s(v);

and whenever, in addition, 6(y,n) = (u, z), we have
(M4) 0(z,vn) = (A, 2).

if A =T, we call X a A-endomorph.

Examples 4.2. (1) Fix k-graphs A, 3, I" and coverings p : ¥ — A and ¢ : ¥ — T}
that is, degree-preserving functors which restrict to bijections on each v and v.
Let X = , X, := {2, : w € X%}, and define 7(z,,) := p(x,) and s(z,) = q(xy,).
Define § : X *I" — Ax X by 0(z,(),¢(0)) = (p(0), Zs(s)). (To see that this makes
sense observe that since ¢ is a covering, o can be recovered from (o) and ¢(o).)
In the picture below, A and I' are cycles of length 2 and 3 and ¥ is the common
covering cycle of length 6.

(2) Fix a k-graph A and an automorphism « of A. Let X, := {z, : v € A’} with
r=oa,s=1id, 0(z,),\) = (a(A),zs»)). Then X, is a A-endomorph. In fact, X
is precisely oXiq from ().

Theorem 4.3. Let A and I" be k-graphs.

(1) Let X be a A-T-morph. There is a unique (k + 1)-graph 3, called the linking
graph for X admitting an isomorphismi =iy, ir : AUT — {0 € ¥ : d(0)x11 = 0}
and a bijection ix : X — X%+ such that r(ix(x)) = ix(r(z)) and s(ix(z)) =
ir(s(x)) for all x € X and ix(x)ir(y) = ian(N)ix(y) whenever 0(z,v) = (A, y).

(2) LetY be a A-endomorph. There is a unique (k + 1)-graph A xy N admitting an
isomorphism in : A — {v € A Xy N : d(y)ks1 = 0} and a bijection iy : Y —
(A xy N)+1 such that r(iy(y)) = ia(r(y)) and s(iy(y)) = ia(s(y)) forally € Y,
and such that iy (y)in(p) = ix(v)iy(2) whenever O(y, u) = (v, 2).

Proof. Let E = E) r be the k-coloured graph with colour map c associated to ALIT .
Define F by F° := E° and F' := F' U {ix(z): 2 € X}, r,s: F* — F inherited from
A, T and X, and colour map agreeing with ¢ on E' and with c(ix(z)) = k + 1 for all
x € X. Define a collection C of squares to consist of those occurring in A U T together
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with those of the form

p(ety) =ix(x), wEF) =7, @) =X and () =ix(y)

whenever 6(x,v) = (\,y). Then C is a complete collection of squares because 0 is a
bijection, and is associative by (M4). Let 3 be the (k+1)-graph obtained from F, ¢ and
C as in Theorem [1.9} In particular, A°XA° is a k-graph with the same coloured graph as
A, so the uniqueness assertion of Theorem [1.9| gives an isomorphism i, : A — A°3A°,
and similarly for I". The (k 4 1)-graph X satisfies the desired factorisation regime by
definition. Uniqueness of X follows from another application of the uniqueness assertion
of Theorem [L.9

The proof is basically the same as that of , except that i, : A — X maps onto
{o € ¥ :d(0)11 = 0} rather than A°SAP. O

Examples 4.4. (1) The common covering of the 2-cycle and the 3-cycle by the 6-cycle
above gives the following linking graph:

(2) Let A be the complete directed binary tree described as follows: the vertices at
level n are indexed by Z/2"Z and there is an edge from the vertex ¢ at level n to the
vertex j at level n — 1 if ¢ is congruent to j5 mod 2"~ !. There is a unique automorphism
a which acts on the vertices at level n by addition of 1 modulo 2". The resulting
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endomorph crossed product A X x_ N has the following coloured graph.

Theorem 4.5. Let A and T be locally convex row-finite k-graphs, and let X be a A—
['-morph in which both r and s are surjective, and r s finite-to-one. Let Y be the
linking graph. Then ) o Siyw) and Y, cro Sipw) converge to full projections Py and
Pr in the multiplier algebra MC*(X). The map i}, : sy +— Siy(n) determines an injective
homomorphism iy : C*(A) — PAC*(X)Py, and the map if : s, — S;.(y) determines an
isomorphism if. : C*(I') = PrC*(X) Pr.

Proof. Recall that C*(X) = span{s,s: : 0,7 € ¥}. For any finite linear combination
a = ZU’TeF o555, the projection Po(py := ZUET(F) s, satisfies P.pyaPypy = a. It
is therefore straightforward that ZUE A0 Sip(v) and Zwef‘o Sip(w) converge in the strict
topology.

To see that they are full, fix ¢ € 3. Then

So = Z sesaPrs;, € C*(X)PrC*(Y),

a€s(o)nSCh+1

so Pr is full. Moreover since s : X — I'? is surjective, we may choose a surjective section
z: 1% — X for s, and then Pr = Y vero ij(x(v))PAsiX(x(v)), and it follows that P, is full
also.

The map A — s;,(y) is a Cuntz-Krieger A-family in C*(X) because the relations
in C*(X) include all those from C*(A); so the universal property of C*(A) gives a
homomorphism 4} : sy — s;,(a). The gauge action on C*(X) restricts to an action 3 of
T* on PyC*(X) Py such that 3,(i%(s))) = 24Mi% (sy) for all \. Hence the gauge-invariant
uniqueness theorem implies that ¢} is injective. The same argument applies to ..
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We clearly have i} : C*(A) C PAC*(X)Py and if. : C*(I') C PrC*(X)Pr. Moreover,
for each 0,7 € X, we have

sest if r(o),r(r) € ip(T°)

T

Prs,stPr =
e {O otherwise.

Since 7(0) € ip(T°) implies o € ip(T), it follows that PrC*(X)Pr C i : C*(T). O
Corollary 4.6. Under the hypotheses of Theorem [{.5 the vector space
HX = PAC*<E)PF

is a C*(N)-C*(I")-correspondence with linking algebra C*(X). If A =T so that X is a
A-endomorph, then Hx is a C*(A)-C*(A)-correspondence, and C*(A xx N) = Oy, .

Proof sketch. The first statement follows from general C*-correspondence theory — the
C*-identity ensures that the norm on the linking algebra is the same as the norm on
Hx which is the same as the restriction of the norm on C*(X).

For the second statement, recall that Op . is generated by a copy ja(C*(A)) of C*(A)
and a copy ju(Hx) of Hx. Setting

tinn) = Ja(sa) for A e A and tix(@) = Jju(sz) for v € X,

and extending this to a map ¢ : A xx N — Op, by (CK2) gives a Cuntz-Krieger
(A xx N)-family which generates Ox. The universal property of Oy, implies that it
carries an action 3 of T**! which matches up with the gauge action on j,(C*(A)) and
satisfies (.(tiy(z) = Zr+1te for all @ € X, so the gauge-invariant uniqueness theorem
implies that 7, : C*(A xx N) — Op, is injective. O

Remark 4.7. One can deduce from the above construction that if A is a locally convex
row-finite k-graph, then C*(A) is an iterated Cuntz-Pimsner algebra in the sense of
Deaconu [3]: given a k-graph I, the set X := I"* is an endomorph of the (k — 1)-graph
A= {X €T :d(\) = 0} whose endomorph crossed-product is I. Hence C*(I') = Oy .
[terating this construction k-times gives an iterated Cuntz-Pimsner algebra construction
of C*(T") with initial coefficient algebra co(T°).

Corollary 4.8. Let oo : A — A be an automorphism. Then there is an automorphism &
of C*(A) satisfying &(sx) = sa) for all X, and C*(A xx, N) = C*(A) x4 Z.

Proof sketch. Since « is an automorphism, it is easy to check that A +— s,(\) determines
a Cuntz-Krieger family, and hence a homomorphism & := 7y, : C*(A) — C*(A). Like-
wise, A — 5,-1(y) determines a Cuntz-Krieger family, and the associated homomorphism
Tsoa-1 18 an inverse for &, whence & is an automorphism of C*(A) as claimed.

Let X = X,. Since « is bijective, Hy is isomorphic as a vector-space to C*(A).
This isomorphism carries the inner product on Hx to the standard right inner-product
(a,b) := a*b on C*(A), so Hx = C*(A)c=(a) as a right Hilbert module. By definition
of § : X * A — Ax X, the left action on Hy is given by ¢ - t, = &(ta)t,, so Hy is
isomorphic as a right-Hilbert bimodule to C*(A). Hence [I7, Example 3, page 183]
shows that O, = C*(A) X4 Z; combined with Corollary [4.6] this proves the result. O
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Hooptedoodle. In fact, the assignments X — Hy and A — C*(A) determine a con-
travariant functor from a category M whose objects are k-graphs and whose morphisms
are isomorphism classes of k-morhps (the fibred product of k-morphs determines a com-
position) to the category C with C*-algebras as objects and isomorphism classes of
C*-correspondences as morphisms. We can then construct graphs of k-morphs: these
are functors from 1-graphs to My. Indeed, this can be made to work for [-graphs of
k-morphs, though in that instance more information is required than just the functor.

Proposition 4.9. Let Ay, Ay,..., A, be locally convex row-finite k-graphs, and let X
be a A;_1—-N\;-morph with r, s surjective and r finite-to-one for each 1 < i < mn. There is
a unique (k + 1)-graph ¥ admitting an isomorphism i : | |\_yA; — {0 € £ : d(0)j41 =
0}, bijections ix, : ia, ,(AY 1)X%+1iy (AY) such that the factorisation property in ¥ is
inherited from the A; and the bijections 6; : X;x\; — N;_1 % X;. The maps ip, determine
injective homomorphisms iy, : C*(A;) — C*(X), each Py, = ZUGA? iy, (Sv) is full, and
Pp,C*(2) Py, = i}, (C"(Ag)).

Proof. The proof is almost identical to those of Theorems [4.3] and 4.5 O

Remark 4.10. If n = oo in Proposition [4.9] it is still straightforward to establish the
existence of the enveloping (k + 1)-graph ¥ and that that Py, are full, but in general
Py, C*(X) Py, # ix, (C*(A,,)) for any n.

5. RANK-2 BRATTELI DIAGRAMS AND AT-ALGEBRAS.

The results in this section first appeared in [16], and indeed the results there were
stated more sharply, at the cost of more complicated proofs. Here we have proved them
in a very different manner to streamline arguments and highlight how the k-morph
construction can be used.

We will write ¢, for the 1-graph with vertices {v; : i € Z/nZ} and edges {e; : i €
Z/nZ} with s(e;) = v; and r(e;) = vi11.

€n—1
\/0\/.\/. . °.
Vo U1 €1 U2 %

€0 €2 VUn—2 €En—2 Up_1

Fix, for the section, a sequence (A,)2, of 1-graphs such that each A, = | |I'" A,
where each A, ; = C’|A% |- For each n > 1, and each pair ¢, 5 with ¢ <m,,_; and j § My,
fix ¢f'; € N. We assume that for each n € N: (1) that for each i < m,,_, there exits j
such that ¢'; # 0; and (2) that for each j < m,, there exists i such that ¢f'; # 0.

Whenever ¢}; # 0, let X7, := , X, be the k-morph of Example [4.2) E' 1)) for the canonical
coverings

P Corgeaqnd_, a0 = Ano1i and ¢ Congeaqao_, 1180, = Any-

For each n, X" = |_|C 7éOX is a A,_1—A,-morph.

As in Remark . there is a unique 2-graph I' such that TO = | |AY, T% = | |A}
and "> = | | X™, and where the factorisation rules are determined by the bijections
GZJ. : Xij kN — A1y * Xi’fj. We call T a rank-2 Bratteli diagram.

n—1,20
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The following picture illustrates how the first few levels of a rank-2 Bratteli diagram
might look

To analyse C*(T"), we first study its building blocks.
Lemma 5.1. Forn > 1, C*(C,) = M, @ C(T).

Proof. For ¢ € Z/nZ \ {n — 1}, define t., := 0,41, ® 1 € M, ® C(T), and define
ten_y = o1 ® 2. Now define t,, := &} t., = 0;; ® 1 for each v; € C?, and for
a = p...0) define t, = t,, .. Loy Then t is a Cuntz-Krieger C,-family which
clearly generates M,, ® C(T). There is an action 3 of T on M,, ® C(T) determined by
B.(0;;®@f) =270, ; ® (w+ f(z"w), and we have (3, om = m 07, for all z. Hence the
gauge-invariant uniqueness theorem implies that 7; is an isomorphism. 0
Corollary 5.2. For each N € N, let T'[0, N] := <U?:1 AQ)F(UQ.; A%). Then C*(T") =
B M, @ C(T) for some collection ly,. .. 1y, € N\ {0}.

Proof. Proposition 4.9 and shows that
mpy
C*(Tpon)) ~ate PayC* (Do) Pay = C*(An) = @D C* (M)
i=1

Lemma 5.1] then implies that C* (Lo 1) ~ve D) C(T). Since C* (g yj) is unital (with
identity ) .ro Sy), the result follows because amongst separable C*-algebras, Morita
equivalence is the same as stable isomorphism. O

Proposition 5.3. For each N € N, let Py := Y00 S o5, € C*T). Then each
PNC*(F)PN = C*(F[()’N]), and

(5.1) C*(T) = Uy—g PnC*(T) Py.
In particular, C*(T") is an AT-algebra.

Proof. Yet another application of the gauge-invariant uniqueness theorem gives the iso-
morphism of C*(T'jg n7) onto PyC*(I')Py. For v € T', we have s(y) € A for some n,
and then s, € PyC*(I')Py for all N > n, establishing (5.1). The last statement is by
definition of AT-algebras. O
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Theorem 5.4 ([16, Theorem 5.1]). Suppose that

(1) for all w € A° there exists n € N such that wAv # () for all v € A°; and
(2) for alll € N there exists n € N such that | X7;| > | whenever ¢i'; # 0.

Then C*(T') is simple and has real rank zero.

Proof. For simplicity, we just need to show that I' is cofinal and aperiodic — Corol-
lary [3.7] does the rest.

For cofinality, fix v,w € I'°. By , there exists ng € N such that wl'u # () for
all u € A?LO. Since the X,, are k-morphs, so their source maps are surjective, we then
have wl'u # ) for all u € |J,—, A). Let m € N be the integer such that v € AJ,
and let N := max{ng,m}. Then s(vI'SV=m)e2) c AQ  and hence wI's(\) # ) for all
A € vI=WN=mlez For aperiodicity, fix distinct p, v € T’ with s(u) = s(v). If d(u) = d(v),
or or r(u) # r(v), then 7 := s(u) satisfies MCE(ur,v7) = 0. Moreover, if d(u)s #
d(v)a, then either r(u) # r(v) or s(u) # s(v) since one pair or the other must be in
different levels of TY. So suppose that r(u) = r(v), s(u) = s(v) € A2 (and hence
d(p)y = d(v)e) and that d(p) # d(v); so d(u); # d(v);. Factorise p = p/p” and
v = V" where d(i'); = d(V'); = 0 = d(")s = d(v")s. Using (), fix m > n+1
such that |X7%| > [d(p)1 — d(v)1| for all 4,7 such that ¢f’; # 0. Let 7 be any element
of s(p)Im=™e By definition of the X! we may identify each with Z/|X!,|Z, so we
can identify 7 with a sequence [pni1][pn+2] - - . [Pm] where each [p] € Z/|X}|Z for some
i,j. In particular, [p,] € Z/|X]}|Z for some i,j and by choice of m it follows that

[Dm + d(i)1] # [pm + d(v)1]. By definition of the X!

i.j» we have

n

pr = f' @' = [pper + d(pn] - [pm + d(ph]p” and

vt = V"'t = pur +dw)] . [pm + d(w) V"

For some p,v". In particular,

pr(d(p'r) = er, d(p't)) = [pm + d(ph] # [pm + dwh] = vr(d(p'T) = e1, d(p'7)),
so MCE(ut,vr) = 0.

It remains to show that C*(I") has real rank zero. To do this we apply a powerful
result of Blackadar-Bratteli-Elliott-Kimjian which says that a simple AT algebra has
real rank zero if and only if projections separate tracial states. For this, fix a trace 7 on
C*(T'). Fix paths a, 8 € I with d(a); = d(8); = 0 and a path p such that d(u), =0,
and suppose that 7(s,s,553) # 0. Then 7(s3s,5,) # 0, forcing sjs, # 0, so r(a) = r(3).
Since d(p), = 0, each of r(u) and s(u) belong to the same A, and it follows that
d(a) = d(), and then sjs, # 0 forces a = 3, and p is a cycle. Choose m > n such that
| X% > [u] whenever ¢ # 0. Then

0 # 7(8a5u55) = T(Sh5a5u) = Z T(SuSpS,) = Z T(SySuSy)

nEs(u)Am e nEs(u)Am e

where each un = n'y/ with d(p') = d(p); and this forces ' = 7 for all . By choice of
m, this forces d(u) = 0. A similar argument applies to show that 7(s,ss5) # 0 forces
a = [ and d(p) = 0. The factorisation property and the Cuntz-Krieger relations show
that C*(I') is spanned by elements of the form #,t,t}; and t,tt};, and it follows that if
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traces 7y, 7o agree on all elements of the form ¢,¢%, then they are equal. In particular,
projections separate tracial states as required. 0

It now follows from Elliott’s classification theorem that C*(T") is classified by its K-
theory.

Theorem 5.5. Let Ey be the directed graph with one vertex u,; for each A, ; and
tuni Egtuni1j| = |X751/1A5 ], and let By be the directed graph with one vertex wy; for
each N and |wy Egwni1 ;] = |X751/|A) 1 ;| Then Ko(C*(T)) is the dimension group
associated to the Bratteli diagram Eo, and K1(C*(T")) is group-isomorphic to the dimen-
sion group associated to the Bratteli diagram FE.

Proof sketch. Let A := {\ € ' : d(\); = 0} regarded as a 1-graph. So A' = | 77 X"
The map v; — v;41 is a bijection of each X] o and determines an automorphism of A.
It is straightforward to see that I' = A x_x N so Corollary 4.8 E implies that C*(T") =
C*(A) x4 Z.

A theorem of Drinen shows that C*(A) is Morita equivalent to the AF algebra with
Bratteli diagram A. The Pimsner-Voiculescu exact sequence in K-theory then implies
that Ko(C*(I")) = coker(1 — &,) and K;(C*(I")) = ker(1 — &.).

To describe the K-theory of C*(A), recall that K.(M,) = (Z,{0}) with generator [p]
for any minimal projection p. Hence

K(C*(A)) =0 and Ko(C*(A)) = lim @ Z[s,],
vEAY
with linking maps determined by

[s0] = Z [Sasq] = Z [ss(@)] = Z [vA w|[s0).

1 1
a€vA acvA wEAn+1

The automorphism & permutes the s, for w in a given A ;. So ker(1 — @) consists
of functions which are constant on cycles. That is

ker(1 — @) @ Z[s,] éné Z[P, ;]
veEAY =1

where P,; = Y _r0 S,. Relation (CK4) gives

Mn41

Pal=>Y_ " > [ssw)

7=1 €Al AN,

Mn+1 AO AlAO
_ Z | n+1’]|[Pn+17j:|

| n+1]’
Mnp+1 )(n+1

= 2{: n+1]]
’ n+1]

Continuity of K-theory then establishes the formula for K;(C*(I")).
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Similarly, for each n,i, the classes [s,] € C*(A) where v € A); are all equivalent
modulo the image of (1 — @&, ). Hence coker(1 —a.) M@, cpo Z[so) = B Z[Sw, ] where
(n,1) + wy, is a fixed choice of representative for each AJ) ;. The Cuntz-Krieger relations

for A show that in coker(1 — &),

|A91,i [Swn,i] = [Pni] = Z |Ag,iA1A?1+1,j|[Swn+1,j]7
J

SO
i
[S’wn,i] = ; |A271| [Swn+1,j]'
Continuity of K-theory once again establishes the formula for Ky(C*(I")). O

Examples 5.6. (1) For the rank-2 Bratteli diagram I" with coloured graph

the graphs E; and FE, are

E 1- I t———¢————+—MO——— @

so we have K,(C*(T")) = (Z[3],Z) and hence C*(T') is stably isomorphic to the
2% Bunce-Deddens algebra.
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(2) For the rank-2 Bratteli diagram I" with coloured graph

\/\\, ‘/

-4

both Ey and E; are isomorphic to the 1-graph obtained by deleting the loops,
which is a telescope of the Bratteli diagram below.

Hence results of Effros and Shen [5] show that the Ky-group associated to this
diagram is Z + Z where 6 is the irrational number %g Hence K,.(C*(I")) =

(Z + 07Z,7?), and it follows that C*(T') is Morita equivalent to the irrational
rotation algebra for rotation 6.

6. COACTIONS, CROSSED-PRODUCTS AND COVERINGS

The connection between skew products and coaction crossed-products was first estab-
lished for graph C*-algebras by Kaliszewski-Quigg-Raeburn [10] and was extended to
k-graphs by Pask-Quigg-Raeburn [14].

Definition 6.1. Let A be a k-graph, and let ¢ : A — G be a functor into a discrete
group G. The skew-product k-graph A x. G is given by (A x. G)" := A" x G with

r(Ag) = (r(A),c(N)g),  s(A.g) = (s(A),9) and (A c(u)g) (1, 9) = (A, 9)-
It is straightforward to see that (A x.G)=" = AS" x G.

Example 6.2. Let E be the 1-graph with a single vertex v and a single edge e. The
following are, from left to right, the skew-product graphs for the functors determined
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by ci(e) =1 € Z, c(e) =2 € Z and c3(e) = [1] € Z/3Z.

Ex,Z: Exn2 E %o, Z/3L
(v,2) (v, 2)g)e 1 (v.12))g
(v,nl(e’l) (v, 1)¢)(0) (e 1)
<v,o>I(e’0) (v, 04/ =1 (v, (13 |(e. 2)
(%_1)1@,_1) (v, =h)g)e =2) (e.[0)
<v,—2>I(e’_2> (v, =2)¢ J(e, =3) (v, [0))

Recall that if G is a discrete group, then there is an injective homomorphism 6¢ :
C*(G) — C*(G) ® C*(G) (the spatial tensor product is used if C*(G) is not nuclear)
defined by §%(s) = s®s for all s € G. A coaction of a discrete group G on a C*-algebra
A is a nondegenerate injective homomorphism 6 : A — A ® C*(G) which satisfies the
coaction identity

(0 ® idew(@)) 0 0 = (ida ®6) 0 6.
The coaction crossed-product A x5 G is generated by homomorphisms i4 : A — A x5 G
and ig : ¢(G) — M(A X5 G) such that if ¢, is the image if the indicator function
X{st € co(G), then gsea(a) = ta(a)g1s whenever §(a) = a ® t. For more details on
coactions and their crossed-products, see [4, Appendix A].

Theorem 6.3. Let A be a locally conver row-finite k-graph and let ¢ : A — G be a
functor into a discrete group. Then there is a coaction § of G on C*(A) determined
by 0(sy) = s\ ® c(A) for each A € A. Moreover, C*(A x.G) = C*(A) x5 G via an
isomorphism which carries s(x gy to t(sx)qqy where v : C*(A) — C*(A) %G is the canonical
inclusion, and the qq are the images of the indicator functions x (s € co(G).

Proof. Define t : A — C*(A) @ C*(G) by ty := s\ ® ¢(\). Since ¢ is a cocycle, we have
t, = s, ® 1 for each v € A” and it follows that ¢ satisfies (CK1). If s(u, g) = r(v, h),
then g = ¢(v)h, and

bty = (5, @ () (5 ® () = susselp)e(v) = 1,
since s satisfies (CK2) and c is a cocycle. So t satisfies (CK2). For A\ € A, we have
thEx = 535a @ c(A)e(A) = 5500 @ 1 = ton
because s satisfies (CK3) and the ¢(g) are unitaries. Similarly, for v € A and n € N,

Z taty = Z $x8y @ c(N)e(N)" = ( Z sAsj) ®1=s5,®1=t,.

AEVAST AEVAST AEVAST
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The universal property of C*(A) yields a homomorphism 6 : C*(A) — C*(A) @ C*(G)
such that §(sy) = tx = sy ®c(A). This 0 is nondegenerate because increasing finite sums
of the form Pp =) _p s, form an approximate identity for C*(A) with §(Pp) = Pr®1
for all F', so the §(Pr) form an approximate identity for C*(A) ® C*(G). An application
of the gauge-invariant uniqueness theorem shows that ¢§ is injective. For the coaction
identity, we calculate

(0®1)od(sy) =0(sx) @c(A) =(sA®c(N) ®c(A) =5\ ® 5G(c()\)) =(1® (5G) o0d(sy)
for all .
To see that C*(A x. G) =2 C*(A) x5 G, define u : A X, G — C*(A) x5 G by ung) =

t(s))gy. Since the g, are mutually orthogonal, and since the «(s,) are also, and since the
¢, commute with the ¢(s,), the map u satisfies (CK1). For (CK2) we calculate

U, e()g) U(rg) = L(81)Qe(w)gt(51)0g = L(8,50)Ae(v)-1e(w)gly = L(SuSv)dg = Uuv.g)s

so u satisfies (CK2). Also,
Uiy Uing) = Qot(S3SA)0g = qgt(Ssn))dg = L(Ss(x))dg = Us(rg)

because §(syy)) = sy ® e. Hence u satisfies (CK3). Finally, for (v,9) € (A x. G)? and
n € NF,

> uomtig = O U\ Gpy-1gt(s3) = D Usa)e(s3)dg = g,
(A R)E(v,g)(AXG)=n AEVAST AEVAST
so u satisfies (CK4). Thus there is a homomorphism 7, : C*(A x. G) — C*(A) x5 G.
The universal property of C*(A) x5 G ensures that the gauge action v on C*(A) induces
an action 8 of T% on C*(A) x5 G such that 3, 01 =107, and B,(q,) = g, for all z,g.
In particular, £.(ug)) = zd()"g)u@,g) for all g. Since the s, go to s, ® 1 under ¢, the
U(v,g) are all nonzero, and the gauge-invariant uniqueness theorem implies that m, is an
isomorphism. O

Corollary 6.4. Let A be a locally convex row-finite k-graph. Then C*(A) x., TF =
C* (A Xd Zk)

—

Proof. We have T = ZF, and the action v of T* on C*(A) corresponds to the coaction
e of Z* given by (sy) = sy ® d()\). The result therefore follows from Theorem O

Lemma 6.5. Let A be a locally convex row-finite k-graph. Then C*(A x4 ZF) is AF.

Proof sketch. Fix a finite subset F' of A x4 Z*. Let Dp := {m € NF : (A\\m) €
F for some A € A}. Let N := \/ Dy € N¥ and let F := Unmyerl(WN,p) :m <
p < N, XN € s(\)AP~™}. Tt is straightforward to check that for (u,m), (v,n) € A x4 Z*,
if (A\,p) € MCE((i,m), (v,n)) then p = m V n. Using this and one checks that
span{snsz : m,¢ € F} is closed under multiplication, and hence a finite-dimensional
subalgebra of C*(A x4 ZF) which contains C*({s,s} : u,v € F'}). Since C*(A x4 ZF) is
the increasing union of the subalgebras span{snsz :n,( € F}, the result follows. 0

Corollary 6.6. Let A be a locally convex row-finite k-graph. Then C*(A) is stably
isomorphic to a crossed product of an AF algebra by 7.
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Proof. Let € be the dual action of Z* on C*(A) x. Z* given by &,(¢(5x)@m) = t(5))@min-
By Takai duality [22], C*(A) ~ye C*(A) x. ZF x: Z*. Corollary and Lemma
combine to show that C*(A) x. ZF = C*(A x4 Z*) is AF, and the result follows. O

We finish with a third take on the Bunce-Deddens algebra of type 2°°. We have seen
it as an AT-algebra and as a crossed product of an AF-algebra by Z. Now we will see
it as a coaction crossed product by the profinite group of 2-adic numbers.

Fix a discrete group G and a sequence G = Hy> Hy > Hy > - - - of finite-index normal
subgroups of G. For each n, let G,, := G/H,. We obtain a projective system

{e}:G0<q_1@1<q_2G2...
of finite groups. Fix a locally convex row-finite k-graph A, and a sequence of cocycles
¢y : A — G, such that ¢,(c,(N\)) = ¢,_1() for all \,n. For g € G, we will write [g],, for
the class of ¢ in G,,.

Each T, := A x., G, is a k-graph, and the map ¢, : I';, — I',,_1 given by ¢, (A, [g]n) =
(N, qn([gn])) = (A [gln—1) is a covering. Let 3 be the infinite (k + 1)-graph of Re-
mark obtained from the tower of k-morphs X, . For each n, let P, := %" 10 5, =

vend fglneGn Swlgl) € C(5).

Lemma 6.7. We have RyC*(X)Fy = lim C*(T',) under inclusions satisfying s(x g,])) —
2 gur (o) =labn SOlBlr)-
Proof. For each n € N¥, let V,, = Zan1*~-~*Xn Sa. Since the source map on each
X is a bijection, the V,, are all partial isometries with V.*V,, = P, and V,V* = F.
The map a — V,aV,* is an injective homomorphism from C*({s, : a € «(T',)}) to
Py,C*(X) Py (gauge-invariant uniqueness theorem again). Every spanning element of
PyC*(X) Py belongs to V,C*({sqa : a € ¢(I';,)}) V. for large enough n, so it follows that
H
To calculate the connecting maps, note that

ViVasougo VaVart = D S55(00gln) Sy

z,y€EXn+1

B Z S()‘v[h/]”+1)8>[kh’]n+1S[h}nﬂ
a([Pln+1)=a([M]n+1)=[gn]

= D) SO

a([Aln+1)=[gn]
as required. 0

Corollary 6.8. For eachn, let d,, be the coaction of G,, on C*(A) determined by §,,(s)) =
Sy ® ¢ (N). Then
P()O*(E)PQ = ll_Il')l(C*(A> X6n Gn)

under inclusions satisfying sxqyg, an+1([h}n+1)=[g]n SAG[h] i1 -
Proof. Combine Lemma [6.7] and Theorem [6.3 U

For the following theorem, let G, = liLnGn be the projective limit group, and let
¢ : Goo — G, be the canonical surjection for each n. We G identify with the set
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of sequences ([gn]n)s, € [1°2, Gn such that ¢,41([gn+1]nt1) = [gn]n for all n. Observe
that the ¢, : A — G,, determine a cocycle ¢y : A — G by Coo(A) := (€ (N))32

n=1-*

Theorem 6.9. There is a coaction 0y of G on C*(A) satisfying ds(Sx) = Sx ® ()
for all X. Moreover,

C*(A) X5 Goo = lim C*(A) X5, G,

oo

and in particular is Morita equivalent to C*(X).

Proof. More or less the same argument as in Theorem shows that there is a coaction
b 1 C*(A) — C*(A) ® C*(G oo f] satisfying do(s)) = sy ® coo(\) — nondegeneracy as a
coaction follows from nondegeneracy as a homomorphism by a result of Landstad [13]
Lemma 3.8] because G is compact and hence amenable. Since Cp(Goo) = lim ¢o(Gy),
for each n the map djy, — X(g)-1([g),) determines a homomorphism of c(G,) into
Co(Gw). Thus Theorem implies that #(xg,) = t(5x)ta(X(g)-1([g],)) determines a
Cuntz-Krieger I',-family in C*(A) X5, G, and hence a homomorphism =, : C*(T',) —
C*(A) x5, Goo, for each n € N. The universal property of C*(A) xs5_ G implies that
there is an action 3 of T* on C*(A) x5, G which fixes the copy of Cy(G ) and satisfies
(.01 =107, and it follows that ., o w, = m, o v, for each n. The gauge-invariant
uniqueness theorem therefore implies that the 7, are injective.

The universal property of lim C*(A) x5, G, then gives o @ im C*(A) x5, Gy —
C*(A) X5, G, and 74 is injective because the m, are all injective. It is surjective
because the X (4ec)-1([g,) SPan a dense subalgebra of Cy(G) so the image of 7, contains
all the generators of C*(A) X5, Go. Remark implies that F is full, so the Morita
equivalence of C*(A) x5 G with C*(X) follows from Corollary [6.8] O

Remark 6.10. In fact the continuity of coaction crossed products by projective systems
of finite discrete groups is a general phenomenon [I5] Theorem 3.1}, but the proof is
more involved.

Example 6.11. Let A be the 1-graph with one edge e and one vertex v. Let G :=Z
and H, = 2"Z for all n, so for each n, G,, = G/H, is the finite cyclic group of order 2.

INot MC*(G) because the projective limit is compact
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Hence G, = Zs the group of 2-adic numbers. Then the 2-graph X is

which is precisely the rank-2 Bratteli diagram corresponding to the 2°° Bunce-Deddens
algebra as described in Example . By Theorem and Lemma , we have
P()C*(E)P() = C(T) X oo Lo,
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