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PRODUCT SYSTEMS OF GRAPHS AND

THE TOEPLITZ ALGEBRAS OF HIGHER-RANK GRAPHS

IAIN RAEBURN AND AIDAN SIMS

Abstract. There has recently been much interest in the C∗-algebras of directed
graphs. Here we consider product systems E of directed graphs over semigroups and
associated C∗-algebras C∗(E) and T C∗(E) which generalise the higher-rank graph
algebras of Kumjian-Pask and their Toeplitz analogues. We study these algebras by
constructing from E a product system X(E) of Hilbert bimodules, and applying re-
cent results of Fowler about the Toeplitz algebras of such systems. Fowler’s hypotheses
turn out to be very interesting graph-theoretically, and indicate new relations which
will have to be added to the usual Cuntz-Krieger relations to obtain a satisfactory
theory of Cuntz-Krieger algebras for product systems of graphs; our algebras C∗(E)
and T C∗(E) are universal for families of partial isometries satisfying these relations.

Our main result is a uniqueness theorem for T C∗(E) which has particularly in-
teresting implications for the C∗-algebras of non-row-finite higher-rank graphs. This
theorem is apparently beyond the reach of Fowler’s theory, and our proof requires a
detailed analysis of the expectation onto the diagonal in T C∗(E).

1. Introduction

The C∗-algebras C∗(E) of infinite directed graphs E are generalisations of the Cuntz-
Krieger algebras which include many interesting C∗-algebras and provide a rich supply
of models for simple purely infinite algebras (see, for example, [13, 3, 9, 19]). In the first
papers, it was assumed for technical reasons that the graphs were locally finite. However,
after C∗(E) had been realised as the Cuntz-Pimsner algebra OX(E) of a Hilbert bimodule
X(E) in [7], it was noticed that OX(E) made sense for arbitrary infinite graphs. The
analysis in [7] applied to the Toeplitz algebra TX(E) rather than OX(E), but the two
coincide for some infinite graphs E, and hence the results of [7] gave information about
OX(E) for these graphs. The results of [7] therefore suggested an appropriate definition
of C∗(E) for arbitrary E, which was implemented in [6].

Higher-rank analogues of Cuntz-Krieger algebras and of the C∗-algebras of row-finite
graphs have been studied by Robertson-Steger [18] and Kumjian-Pask [11], respectively.
It was observed in [8] that the higher-rank graphs of Kumjian and Pask could be viewed
as product systems of graphs over the semigroup Nk. The main object of this paper
is to extend the construction E 7→ X(E) to product systems of graphs over Nk and
other semigroups, to apply the results of [5] to the resulting product systems of Hilbert
bimodules, and to see what insight might be gained into the C∗-algebras of arbitrary
higher-rank graphs.

It is relatively easy to extend the construction of X(E) to product systems, and to
identify Toeplitz E-families which correspond to the Toeplitz representations of X(E)
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2 IAIN RAEBURN AND AIDAN SIMS

studied in [5]. The story becomes interesting when we investigate the conditions on
E and on Toeplitz E-families which ensure that we can apply [5, Theorem 7.2] to the
corresponding representation of X(E). To understand the issues, we digress briefly.

The isometric representation theory of semigroups suggests that in general TX(E) will
be too big to behave like a Cuntz-Krieger algebra, and that we should restrict attention
to the Nica-covariant representations of [15, 14, 4, 5]. However, Nica covariance is in
general a spatial phenomenon, and to talk about the universal C∗-algebra Tcov(X) gen-
erated by a Nica-covariant Toeplitz representation of a product system X of bimodules,
we need to assume that X is compactly aligned in the sense of [4, 5].

We identify the finitely aligned product systems E of graphs for which X(E) is com-
pactly aligned, and the Toeplitz-Cuntz-Krieger E-families {Sλ} which correspond to
Nica-covariant Toeplitz representations of X(E). The C∗-algebra generated by {Sλ}
is then spanned by the products SλS

∗
µ, as Cuntz-Krieger algebras and their Toeplitz

analogues are. We therefore define the Toeplitz algebra T C∗(E) of a finitely aligned
product system E to be the universal C∗-algebra generated by a Toeplitz-Cuntz-Krieger
E-family; for technical reasons, we only define the Cuntz-Krieger algebra C∗(E) to be
the appropriate quotient of T C∗(E) when E has no sinks.

Fowler’s [5, Theorem 7.2] gives a spatial condition under which a Nica-covariant
Toeplitz representation of a compactly aligned product system X of Hilbert bimod-
ules is faithful on Tcov(X). Since T C∗(E) has essentially the same representation theory
as Tcov(X(E)), Fowler’s theorem describes some faithful representations of T C∗(E).
However, the resulting theorem about Toeplitz-Cuntz-Krieger E-families is not as sharp
as we would like, for the same reasons that [7, Theorem 2.1] is not: applied to the single
graph E with T C∗(E) = O∞, it says that isometries {Si} satisfying 1 >

∑∞
i=1 SiS

∗
i

generate an isomorphic copy of O∞, whereas we know from [1] that 1 ≥
∑∞

i=1 SiS
∗
i

suffices. Our main theorem is sharp in this sense: it is an analogue of [7, Theorem 3.1]
rather than [7, Theorem 2.1]. It suggests an appropriate set of Cuntz-Krieger relations
for product systems of not-necessarily-row-finite graphs, and gives a uniqueness theorem
of Cuntz-Krieger type for k-graphs in which each vertex receives infinitely many edges
of each degree.

We start with a short review of the basic facts about graphs and the Cuntz-Krieger bi-
moduleX(E) of a single graphE. In §3, we associate to each product system E of graphs
a product system X(E) of Cuntz-Krieger bimodules (Proposition 3.2). In §4, we define
Toeplitz E-families, and show that there is a one-to-one correspondence between such
families and Toeplitz representations of X(E) (Theorem 4.2). We then restrict attention
to product systems over the quasi-lattice ordered semigroups of Nica, and identify the
finitely aligned product systems E of graphs for which X(E) is compactly aligned (The-
orem 5.4). In §6, we discuss Nica covariance, and show that for finitely aligned systems,
it becomes a familiar relation which is automatically satisfied by Cuntz-Krieger fami-
lies of a single graph. By adding this relation to those of a Toeplitz family, we obtain
an appropriate definition of Toeplitz-Cuntz-Krieger E-families for more general E, and
then T C∗(E) is the universal C∗-algebra generated by such a family. We can now apply
Fowler’s theorem to X(E) (Proposition 7.6), and deduce that the Fock representation
of T C∗(E) is faithful (Corollary 7.7).
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Our main Theorem 8.1 is a C∗-algebraic uniqueness theorem. It does not appear to
follow from Fowler’s results: its proof requires a detailed analysis of the expectation
onto the diagonal in T C∗(E) and its spatial implementation, as well as an application
of Corollary 7.7. In the last section, we apply Theorem 8.1 to the k-graphs of [11]. Our
results are all interesting in this case, and those interested primarily in k-graphs could
assume P = Nk throughout the paper without losing the main points.

2. Preliminaries

2.1. Graphs and Cuntz-Krieger families. A directed graph E = (E0, E1, r, s) con-
sists of a countable vertex set E0, a countable edge set E1, and range and source maps
r, s : E1 → E0. All graphs in this paper are directed.

A Toeplitz-Cuntz-Krieger E-family in a C∗-algebra B consists of mutually orthogonal
projections {pv : v ∈ E0} in B and partial isometries {sλ : λ ∈ E1} in B satisfying
s∗λsλ = pr(λ) for λ ∈ E1 and

pv ≥
∑

λ∈F

sλs
∗
λ for every v ∈ E0 and every finite set F ⊂ s−1(v).

It is a Cuntz-Krieger E-family if

pv =
∑

λ∈s−1(v)

sλs
∗
λ whenever s−1(v) is finite and nonempty.

2.2. Hilbert bimodules. Let A be a C∗-algebra. A right-Hilbert A − A bimodule (or
Hilbert bimodule over A) is a right Hilbert A-module X together with a left action
(a, x) 7→ a · x of A by adjointable operators on X; we denote by φ the homomorphism
of A into L(X) given by the left action. We say X is essential if

span{a · x : a ∈ A, x ∈ X} = X.

A Toeplitz representation (ψ, π) of a Hilbert bimodule X in a C∗-algebra B consists
of a linear map ψ : X → B and a homomorphism π : A→ B such that

ψ(x · a) = ψ(x)π(a), ψ(a · x) = π(a)ψ(x), and ψ(x)∗ψ(y) = π(〈x, y〉A)

for x, y ∈ X and a ∈ A. There is then a unique homomorphism ψ(1) : K(X) → B such
that

ψ(1)(Θx,y) = ψ(x)ψ(y)∗ for x, y ∈ X;

see [16, page 202], [10, Lemma 2.2], or [7, Remark 1.7] for details. The representation
(ψ, π) is Cuntz-Pimsner covariant if

ψ(1)(φ(a)) = π(a) whenever φ(a) ∈ K(X).

Pimsner associated to each Hilbert bimodule X a C∗-algebra TX which is universal for
Toeplitz representations of X, and a quotient OX which is universal for Cuntz-Pimsner
covariant Toeplitz representations of X ([16]; see also [7, §1]).
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2.3. Cuntz-Krieger bimodules. The Cuntz-Krieger bimodule X(E) of a graph E, as
in [7, Example 1.2], consists of the functions x : E1 → C such that

(2.1) ρx : v 7→
∑

λ∈E1,r(λ)=v

|x(λ)|2

vanishes at infinity on E0. With

(x · a)(λ) := x(λ)a(r(λ)) and (a · x)(λ) := a(s(λ))x(λ) for λ ∈ E1, and

〈x, y〉C0(E0)(v) :=
∑

λ∈E1,r(λ)=v

x(λ)y(λ) for v ∈ E0,

X(E) is a Hilbert bimodule over C0(E
0). The Toeplitz representations of X(E) are

in one-to-one correspondence with the Toeplitz-Cuntz-Krieger E-families via (ψ, π) ↔
{ψ(δλ), π(δv)} [7, Example 1.2]. Hence TX(E) is universal for Toeplitz-Cuntz-Krieger
E-families. When E has no sinks, the left action of C0(E

0) on X(E) is faithful, the
Cuntz-Pimsner covariant representations correspond to Cuntz-Krieger E-families, and
the quotient OX(E) is the usual graph C∗-algebra C∗(E).

Because of the correspondence (ψ, π) ↔ {ψ(δλ), π(δv)}, it is convenient in calculations
to work with the point masses δλ ∈ X(E). The following lemma explains why this
suffices.

Lemma 2.1. The space Xc(E) := Cc(E
1) is a dense submodule of X(E), and the point

masses {δλ : λ ∈ E1} are a vector-space basis for Xc(E
1).

Proof. As a Banach space, X(E) is the c0-direct sum
⊕

v∈E0 `2(r−1(v)), and Xc(E) is
the algebraic direct sum of the subspaces Cc(r

−1(v)). So it is standard that Xc(E) is
dense. For x ∈ Xc(E), we have x =

∑

λ∈E1 x(λ)δλ. �

3. Product systems of graphs and of Hilbert bimodules

Throughout the next two sections, P denotes an arbitrary countable semigroup with
identity e. If E = (E0, E1, rE, sE) and F = (E0, F 1, rF , sF ) are two graphs with the
same vertex set E0, then E ×E0 F denotes the graph with (E ×E0 F )0 := E0,

(E ×E0 F )1 := {(λ, µ) : λ ∈ E1, µ ∈ F 1, rE(λ) = sF (µ)},

and s(λ, µ) := sE(λ), r(λ, µ) := rF (µ).
We recall from [8] that a product system (E,ϕ) of graphs over P consists of graphs

{(E0, E1
p , rp, sp) : p ∈ P} with common vertex set E0 and disjoint edge sets E1

p , and
isomorphisms ϕp,q : Ep ×E0 Eq → Epq for p, q ∈ P satisfying the associativity condition

(3.1) ϕpq,r(ϕp,q(λ, µ)), ν) = ϕp,qr(λ, ϕq,r(µ, ν))

for all p, q, r ∈ P , (λ, µ) ∈ (Ep ×E0 Eq)
1, and (µ, ν) ∈ (Eq ×E0 Er)

1; we require that

Ee = (E0, E0, idE0, idE0).

We write d(λ) = p to mean λ ∈ E1
p ; because the E1

p are disjoint, this gives a well-defined

degree map d : E1 :=
⋃

p∈P E
1
p → P , which gives the vertices E0 = E1

e degree e. The

range and source maps combine to give maps r, s : E1 → E0.
The isomorphisms ϕp,q in a product system (E,ϕ) combine to give a partial multiplica-

tion on E1: for (λ, µ) ∈ E1
p ×E0 E1

q , we define λµ = ϕp,q(λ, µ) ∈ E1
pq. This multiplication
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is associative by (3.1). Since each ϕp,q is an isomorphism, the multiplication has the fol-
lowing factorisation property : for each γ ∈ E1

pq, there is a unique (λ, µ) ∈ (Ep ×E0 Eq)
1

such that γ = λµ. It follows that if λ ∈ E1
pqr, then there is a unique λ(p, pq) ∈ E1

q such
that λ = λ′λ(p, pq)λ′′ with d(λ′) = p and d(λ′′) = r. By (3.1) and the factorisation
property, s(λ)λ = λ = λr(λ) for all λ.

A single graph E gives a product system over N in which E1
n consists of the paths of

length n in E. More generally:

Example 3.1 (k-graphs). It is shown in [8, Examples 1.5, (4)] that the product systems
of graphs over Nk are essentially the same as the k-graphs of [11, Definitions 1.1]:

• Given a product system (E,ϕ) of graphs over Nk, let ΛE be the category with
objects E0 and morphisms E1, with dom(λ) := r(λ) and cod(λ) := s(λ). The
degree map is that of E, the morphism λ ◦ µ is by definition the morphism
associated to the edge λµ, and the factorisation property for ΛE reduces to that
of E.

• Given a k-graph (Λ, d), let (EΛ)0 := Λ0, (EΛ)1
n := Λn for n ∈ Nk, λµ := λ ◦ µ ∈

Λm+n whenever (λ, µ) ∈ (Em ×E0 En)
1, and define r := dom and s := cod.

The direction of the edges is reversed in going from (Λ, d) to (EΛ, ϕΛ) to ensure that the
representations of the two coincide (compare Definition 4.1 with [11, Definitions 1.5]).

Proposition 3.2. If (E,ϕ) is a product system of graphs over P , then there is a unique
associative multiplication on X(E) :=

⋃

p∈P X(Ep) such that

(3.2) δλδµ :=

{

δλµ if (λ, µ) ∈ (Ed(λ) ×E0 Ed(µ))
1

0 otherwise,

and X(E) thus becomes a product system of Hilbert bimodules over C0(E
0) as in [5,

Definition 2.1].

Remark 3.3. We have described the multiplication using point masses because we want
to use them in calculations. However, we also write it out explicitly in Corollary 3.4.

Proof of Proposition 3.2. It follows from Lemma 2.1 that the elements δλ⊗δµ are a basis
for the algebraic tensor product Xc(Ep)�Xc(Eq), and hence there is a well-defined linear
map π : Xc(Ep) �Xc(Eq) → Xc(Epq) such that

π(δλ ⊗ δµ) =

{

δλµ if (λ, µ) ∈ (Ed(λ) ×E0 Ed(µ))
1

0 otherwise.

Let λ, µ, η, ξ ∈ E1. Then

〈

δλ ⊗ δµ, δη ⊗ δξ
〉

C0(E0)
(v) =

〈

〈δη, δλ〉C0(E0) · δµ, δξ
〉

C0(E0)
(v)

=

{

1 if η = λ, ξ = µ, r(λ) = s(µ) and r(µ) = v

0 otherwise.
(3.3)
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On the other hand,
〈

π(δλ ⊗ δµ), π(δη ⊗ δξ)
〉

C0(E0)
(v)

=

{

〈δλµ, δηξ〉C0(E0)(v) if r(λ) = s(µ) and r(η) = s(ξ)

0 otherwise

=

{

1 if r(λ) = s(µ), r(η) = s(ξ), λµ = ηξ and r(µ) = v

0 otherwise,

which by the factorisation property is (3.3). SinceXc(Ep) is dense inX(Ep) (Lemma 2.1),
it follows that π extends to an isometric linear isomorphism ofX(Ep)⊗C0(E0)X(Eq) onto
X(Epq). It is easy to check on dense subspaces Xc(Ep) and span{δv} ⊂ C0(E

0) that π is
an isomorphism of Hilbert C0(E

0)-bimodules. We now define xy := π(x⊗ y), and asso-
ciativity of this multiplication follows from (3.1). More calculations on dense subspaces
show that xa = x · a and ax = a · x for a ∈ C0(E

0) = X(Ee) and x ∈ X(Ep). �

Corollary 3.4. For x ∈ X(Ep) and y ∈ X(Eq), we have

(3.4) (xy)(λµ) = x(λ)y(µ) for (λ, µ) ∈ (Ep ×E0 Eq)
1.

Proof. The multiplication extends to an isomorphism of X(Ep) ⊗C0(E0) X(Eq) onto
X(Epq), (x, y) 7→ x ⊗ y is continuous, and the various evaluation maps z 7→ z(λ) are
continuous, so Lemma 2.1 implies that it is enough to prove (3.4) for x ∈ Xc(Ep) and
y ∈ Xc(Eq). For such x, y we have

(xy)(λµ) =
∑

α∈E1
p ,β∈E

1
q

x(α)y(β)(δαδβ)(λµ),

which collapses to x(λ)y(µ) by the factorisation property. �

4. Representations of product systems

Throughout this section, (E,ϕ) is a product system of graphs over P .

Definition 4.1. Partial isometries {sλ : λ ∈ E1} in a C∗-algebra B form a Toeplitz
E-family if:

(1) {sv : v ∈ E0} are mutually orthogonal projections,
(2) sλsµ = sλµ for all λ, µ ∈ E1 such that r(λ) = s(µ),
(3) s∗λsλ = sr(λ) for all λ ∈ E1, and
(4) for all p ∈ P \ {e}, v ∈ E0 and every finite F ⊂ s−1

p (v), sv ≥
∑

λ∈F sλs
∗
λ.

We recall from [5] that a Toeplitz representation ψ of a product system X of bimodules
consists of linear maps ψp : Xp → B such that each (ψp, ψe) is a Toeplitz representation
ofXp, and ψp(x)ψq(y) = ψpq(xy). It is Cuntz-Pimsner covariant if each (ψp, ψe) is Cuntz-
Pimsner covariant. Fowler proves that there is a C∗-algebra TX generated by a universal
Toeplitz representation iX , and a quotient OX generated by a universal Cuntz-Pimsner
covariant representation jX [5, §2].
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Theorem 4.2. Let (E,ϕ) be a product system of graphs over a semigroup P , and let
X(E) be the corresponding product system of Cuntz-Krieger bimodules. If ψ is a Toeplitz
representation of X(E), then

(4.1) {sλ := ψd(λ)(δλ) : λ ∈ E1}

is a Toeplitz E-family; conversely, if {sλ : λ ∈ E1} is a Toeplitz E-family, then the map

(4.2) x ∈ Cc(E
1
p) 7→

∑

λ∈E1
p

x(λ)sλ

extends to a Toeplitz representation of X(E) from which we can recover sλ = ψd(λ)(δλ).
The representation ψ is Cuntz-Pimsner covariant if and only if {sλ} satisfies

(4.3) sv =
∑

λ∈s−1
p (v)

sλs
∗
λ whenever s−1

p (v) is finite (possibly empty).

Proof. If ψ is a Toeplitz representation of X(E), then [7, Example 1.2] shows that

{ψe(δv), ψp(δλ) : v ∈ E0, λ ∈ E1
p}

is a Toeplitz-Cuntz-Krieger family for Ep as in [7], and this gives (1), (3), and (4) of
Definition 4.1. Definition 4.1(2) follows from (3.2) because ψ is a homomorphism.

Now suppose that ψ is Cuntz-Pimsner covariant and s−1
p (v) is finite. Write φp :

C0(E
0) → L(Xp) for the homomorphism that implements the left action on Xp. Then

(4.4)
∑

λ∈s−1
p (v)

ψp(δλ)ψp(δλ)
∗ =

∑

λ∈s−1
p (v)

ψ(1)
p (Θδλ,δλ) = ψ(1)

p

(

∑

λ∈s−1
p (v)

Θδλ,δλ

)

.

For x ∈ Xp, w ∈ E0 and µ ∈ E1
p ,

(

∑

λ∈s−1
p (w)

Θδλ,δλ(x)
)

(µ) =

{

x(µ) if µ ∈ s−1
p (w)

0 otherwise

}

= (δw · x)(µ).

Hence the right hand side of (4.4) is just ψ
(1)
p (φp(δv)). Since φp(δv) belongs to K(Xp)

[7, Proposition 4.4], Cuntz-Pimsner covariance gives ψ
(1)
p (φp(δv)) = ψe(δv). Thus

∑

λ∈s−1
p (v)

sλs
∗
λ =

∑

λ∈s−1
p (v)

ψp(δλ)ψp(δλ)
∗ = ψe(δv) = sv.

If {sλ : λ ∈ E1} is a Toeplitz E-family, [7, Example 1.2] implies that ψp(δλ) := sλ
extend to Toeplitz representations (ψp, ψe) of Xp for p ∈ P ; since

ψpq(δλδµ) = ψpq(δλµ) = sλ mu = sλsµ = ψp(δλ)ψq(δµ),

it follows that ψ is a Toeplitz representation of X(E). We trivially have sλ = ψd(λ)(δλ).
If {sλ : λ ∈ E1} satisfies (4.3), then for p ∈ P and v ∈ E0 with s−1

p (v) finite,

ψ(1)
p (φp(δv)) = ψ(1)

p

(

∑

λ∈s−1
p (v)

Θδλ,δλ

)

=
∑

λ∈s−1
p (v)

ψp(δλ)ψp(δλ)
∗,

which is ψe(δv) by (4.3). Proposition 4.4 of [7] ensures that {δv : |s−1
p (v)| <∞} spans a

dense subspace of {a ∈ C0(E
0) : φ(a) ∈ K(Xp)}, so ψ is Cuntz-Pimsner covariant. �
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Corollary 4.3. Let (E,ϕ) be a product system of graphs over a semigroup P . Then
(TX(E), iX(E)) is universal for Toeplitz E-families in the sense that

(1) {sλ} := {iX(E)(δλ)} is a Toeplitz E-family which generates TX(E); and
(2) for every Toeplitz E-family {sλ}, there is a representation ψ∗ of TX(E) such that

(ψ∗ ◦ iX(E))(δλ) = sλ for every λ ∈ E1.

Similarly, (OX(E), jX(E)) is universal for Toeplitz E-families satisfying (4.3).

Proof. This follows from Theorem 4.2 and the universal properties of TX(E) and OX(E)

described in [5, Propositions 2.8 and 2.9]. �

If (E,ϕ) is a product system of row-finite graphs without sinks over Nk, then ΛE is
row-finite and has no sources as in [11], and the Toeplitz E-families which satisfy (4.3)
are precisely the ∗-representations of ΛE. Hence:

Corollary 4.4. Let Λ be a row-finite k-graph with no sources as in [11], define EΛ as
in Example 3.1, and let X = X(EΛ). Then there is an isomorphism of C∗(Λ) onto OX

carrying sλ to iX(δλ).

Remark 4.5. If there are vertices which are sinks in one or more Ep, then some subtle
issues arise, and the Toeplitz E-families satisfying (4.3) are not necessarily the Cuntz-
Krieger ΛE-families studied in [17]. Here, though, we care primarily about Toeplitz
familes, and the presence of sinks does not cause problems.

5. Compactly aligned product systems of Cuntz-Krieger bimodules

The compactly aligned product systems are a large class of product systems whose
Toeplitz algebras have been analysed in [4] and [5]. To apply the results of [5], we need
to identify the product systems E of graphs for which X(E) is compactly aligned.

In compactly aligned product systems, the underlying semigroup P has to be quasi-
lattice ordered in the sense of Nica [15, 14]. Suppose P is a subsemigroup of a group
G such that P ∩ P−1 = {e}. Then g ≤ h ⇐⇒ g−1h ∈ P defines a partial order on G,
and P is quasi-lattice ordered if every finite subset of G with an upper bound in P has
a least upper bound in P . (Strictly speaking, it is the pair (G,P ) which is quasi-lattice
ordered.) If two elements p and q have a common upper bound in P , p∨ q denotes their
least upper bound; otherwise, we write p ∨ q = ∞.

Totally ordered groups, free groups, and products of these groups are all quasi-lattice
ordered. The main example of interest to us is (G,P ) = (Zk,Nk), which is actually
lattice-ordered : each pair m,n ∈ N

k has a least upper bound m∨ n with ith coordinate
(m ∨ n)i := max{mi, ni}.

Let X be a product system of bimodules over a quasi-lattice ordered semigroup P ,
and suppose p, q ∈ P have p ∨ q <∞. Since S ∈ L(Xp) acts as an adjointable operator
S ⊗ 1 on Xp ⊗A Xp−1(p∨q), the isomorphism of Xp ⊗A Xp−1(p∨q) onto Xp∨q induced by
the multiplication gives an action of L(Xp) on Xp∨q; we write Sp∨qp for the image of
S ∈ L(Xp), so that Sp∨qp is characterised by

(5.1) Sp∨qp (xy) := (Sx)y for x ∈ Xp, y ∈ Xp−1(p∨q).

The product system X is compactly aligned [5, Definition 5.7] if

S ∈ K(Xp) and T ∈ K(Xq) imply (Sp∨qp )(T p∨qq ) ∈ K(Xp∨q).
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When X = X(E) is a product system of Cuntz-Krieger bimodules, Lemma 2.1 implies
that the point masses span dense subspaces of X(Ep), and the rank-one operators Θx,y

span dense subspaces of K(X); thus to prove that X(E) is compactly aligned, it suffices
to check that every

(5.2) (Θδµ1 ,δµ2
)p∨qp (Θδν1 ,δν2

)p∨qq belongs to K(X(Ep∨q)).

To prove that a given X(E) is not compactly aligned, we need to be able to recognise
non-compact operators on X(E).

Lemma 5.1. Let X(E) be the Cuntz-Krieger bimodule of a graph, and let S ∈ K(X(E)).
Then the function xS : E1 → R defined by xS(λ) := ‖S(δλ)‖C0(E0) vanishes at infinity
on E1.

Proof. First suppose S = Θx,y for some x, y ∈ X(E). Then for λ ∈ E1, we have

‖Θx,y(δλ)‖
2 =

∑

r(µ)=r(λ)

|x(µ)y(λ)|2 ≤ |y(λ)|2‖x‖2;

since y ∈ X(E) ⊂ C0(E
1), so is λ 7→ ‖Θx,y(δλ)‖. Easy calculations show that |xwS+zT (λ)| ≤

|w| |xS(λ)| + |z| |xT (λ)| and |xS(λ)| ≤ ‖S‖L(X(E)), so the result for arbitrary S ∈
K(X(E)) follows by linearity and continuity. �

Example 5.2. (A Cuntz-Krieger bimodule which is not compactly aligned.) Let (G,P ) =
(Z2,N2). Let E0 := {(0, 0), (0, 1), (1, 0), (1, 1)},

E1
(1,0) := {λ} ∪ {αi : i ∈ N}, E1

(0,1) := {µi : i ∈ N} ∪ {β},

and define

r(λ) = (1, 0), s(λ) = (0, 0), r(αi) = (1, 1), s(αi) = (0, 1), and

r(µi) = (1, 1), s(µi) = (1, 0), r(β) = (0, 1), s(β) = (0, 0).

By [8, Theorem 2.1], there is a unique product system E over N2 in which βαi = λµi.
In pictures:

E(1,0) =

(0, 0)

(0, 1)

(1, 0)

(1, 1)

•

•

•

•

-

--

λ

...αi

E(0,1) =

(0, 0)

(0, 1)

(1, 0)

(1, 1)

•

•

•

•
6 66

β . . .µi

E(1,1) =

(0, 0)

(0, 1)

(1, 0)

(1, 1)

•

•

•

•

�
���

�
���
. . .
βαi=λµi

For S := Θδλ,δλ and T := Θδβ ,δβ , we can compute S
(1,1)
(1,0) ◦ T

(1,1)
(0,1) (δλµi

) using (5.1). To

evaluate T
(1,1)
(0,1) (δλµi

) we need to factor λµi as βαi, so that δλµi
= δβδαi

. Then

S
(1,1)
(1,0) ◦ T

(1,1)
(0,1) (δλµi

) = S
(1,1)
(1,0)(T (δβ)δαi

) = S
(1,1)
(1,0)(δβδαi

)(5.3)

= S
(1,1)
(1,0)(δλδµi

) = S(δλ)δµi
= δλµi

.
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Thus λµi 7→
∥

∥S
(1,1)
(1,0) ◦ T

(1,1)
(0,1) (δλµi

)
∥

∥ does not vanish at infinity on E1
(1,1). Lemma 5.1

therefore implies that S
(1,1)
(1,0) ◦ T

(1,1)
(0,1) is not compact, and E is not compactly aligned.

To identify the E for which X(E) is compactly aligned, we legislate out the behaviour
which makes Example 5.2 work. More precisely:

Definition 5.3. Suppose (E,ϕ) is a product system of graphs over a quasi-lattice or-
dered semigroup P , and let µ ∈ E1

p and ν ∈ E1
q . A common extension of µ and ν is a

path γ such that γ(0, p) = µ and γ(0, q) = ν. Notice that d(γ) is then an upper bound
for p and q, so p∨ q <∞; we say that γ is a minimal common extension if d(γ) = p∨ q.
We denote by MCE(µ, ν) the set of minimal common extensions of µ and ν, and say
that (E,ϕ) is finitely aligned if MCE(µ, ν) is finite (possibly empty) for all µ, ν ∈ E1.

Theorem 5.4. Let (E,ϕ) be a product system of graphs over a quasi-lattice ordered
semigroup P . Then X(E) is compactly aligned if and only if (E,ϕ) is finitely aligned.

Proof. If MCE(λ, β) is infinite for some α and β, there are infinitely many paths µi
and αi such that λµi = βαi, and the argument of Example 5.2 shows that X(E) is not
compactly aligned. Suppose that (E,ϕ) is finitely aligned, p, q ∈ P satisfy p∨q <∞, and
µ1, µ2 ∈ E1

p , ν1, ν2 ∈ E1
q . Then computations like (5.3) show that (Θδν1 ,δν2

)p∨qq (δλ) = 0
unless λ(e, q) = ν2, and then with σ := ν1λ(q, p ∨ q) we have

(Θδµ1 ,δµ2
)p∨qp (Θδν1 ,δν2

)p∨qq (δλ) = δν2(λ(0, q))δµ2(σ(0, p))δµ1σ(p,p∨q)

=

{

δµ1σ(p,p∨q) if σ(0, p) = µ2

0 otherwise.

Thus

(Θδµ1 ,δµ2
)p∨qp (Θδν1 ,δν2

)p∨qq =
∑

σ∈MCE(µ2,ν1)

Θδµ1σ(p,p∨q),δν2σ(q,p∨q)
,

which belongs to K(X(E)) because MCE(µ2, ν1) is finite. �

6. Nica covariance

In this section, we show that when X = X(E), Fowler’s Nica-covariance condition
reduces to an extra relation for Toeplitz E-families, which will look familiar to anyone
who has studied any generalisation of Cuntz-Krieger algebras. This relation automati-
cally holds for Toeplitz-Cuntz-Krieger families of single graphs, but is not automatic for
the Toeplitz families of product systems.

Suppose X is a product system of A − A bimodules over a quasi-lattice ordered
semigroup P , and ψ is a nondegenerate Toeplitz representation of X on H. Fowler
shows in [5, Proposition 4.1] that there is an action αψ : P → Endψe(A)′ such that

(6.1) αψp (T )ψp(x) = ψp(x)T for T ∈ ψe(A)′ and αψp (1)h = 0 for h ∈ ψp(Xp)
⊥.

The representation ψ is Nica covariant if

(6.2) αψp (1p)α
ψ
q (1q) =

{

α
ψ
p∨q(1p∨q) if p ∨ q <∞

0 otherwise.
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We denote by (Tcov(X), iX) the pair which is universal for Nica-covariant Toeplitz rep-
resentations of X in the sense of [5, Theorem 6.3]. When X is compactly aligned, it
follows from [5, Lemma 5.5 and Proposition 5.6] that the Nica covariance condition (6.2)
makes sense for a representation taking values in a C∗-algebra, and then (Tcov(X), iX)
is universal in the usual sense of the word.

When P is the positive cone in a totally ordered group, p ∨ q is either p or q, and
Nica covariance is automatic. Thus Toeplitz representations of a single Cuntz-Krieger
bimodule X(E) are always Nica covariant. For product systems of row-finite graphs
over lattice-ordered semigroups such as N

k, Nica covariance is a consequence of Cuntz-
Pimsner covariance:

Lemma 6.1. Let (E,ϕ) be a product system of graphs over a lattice-ordered semigroup
P . If every Ep is row-finite, then every Toeplitz representation of X(E) which is Cuntz-
Pimsner covariant is also Nica covariant. In particular, if Λ is a row-finite k-graph,
every Cuntz-Pimsner covariant representation of X(EΛ) is Nica covariant.

Proof. Since each Ep is row-finite, C0(E
0) acts by compact operators on the left of each

X(Ep) [7, Proposition 4.4], and the result follows from [5, Proposition 5.4]. �

Corollary 6.2. Let (E,ϕ) be a product system of row-finite graphs over a lattice-ordered
semigroup P . Then OX(E) is isomorphic to a quotient of Tcov(X(E)).

Proposition 6.3. Let (E,ϕ) be a product system of graphs over a quasi-lattice ordered
semigroup P , and let ψ be a nondegenerate Toeplitz representation of X(E) on H. For
p ∈ P , T ∈ B(H) and h ∈ H, the sum

∑

λ∈E1
p

ψp(δλ)Tψp(δλ)
∗h

converges in H; if T ∈ ψe(C0(E
0))′, it converges to αψp (T )h.

Proof. By [5, Proposition 4.1(1)], it suffices to work with a representation (ψ, π) of a
single graph E, and show

(1) that the sum α(T )h :=
∑

λ∈E1 ψ(δλ)Tψ(δλ)
∗h converges for all h ∈ H;

(2) that α(T ) ∈ B(H) for each T ∈ B(H);
(3) that α is an endomorphism of π(C0(E

0))′; and
(4) that α satisfies α(T )ψ(x) = ψ(x)T for T ∈ ψe(C0(E

0))′, and α(1)|(ψ(X)H)⊥ = 0.

Because the ψ(δλ) are partial isometries with orthogonal ranges, we have
∑

λ∈E1

‖ψ(δλ)Tψ(δλ)
∗h‖2 ≤

∑

λ∈E1

‖T‖2‖ψ(δλ)
∗h‖2 ≤ ‖T‖2‖h‖2.

Thus
∑

λ∈E1 ψ(δλ)Tψ(δλ)
∗h is a sum of orthogonal vectors which converges in H, and

the sum satisfies

‖α(T )h‖2 =
∥

∥

∥

∑

λ∈E1

ψ(δλ)Tψ(δλ)
∗h

∥

∥

∥

2

=
∑

λ∈E1

‖ψ(δλ)Tψ(δλ)
∗h‖2 ≤ ‖T‖2‖h‖2.

This gives (1) and (2).
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Multiplying ψ(δλ)Tψ(δλ)
∗ on either side by ψ(δv) gives 0 unless v = s(λ), and leaves

it alone if v = s(λ). Thus each ψ(δλ)Tψ(δλ)
∗ belongs to π(C0(E

0))′, and so does the
strong sum α(T ). If S and T belong to π(C0(E

0))′, then

ψ(δλ)Sψ(δλ)
∗ψ(δµ)Tψ(δµ)

∗ = ψ(δλ)Sψ(〈δλ, δµ〉C0(E0))Tψ(δµ)
∗

=

{

ψ(δλ)STψ(〈δλ, δµ〉C0(E0))ψ(δµ)
∗ if µ = λ

0 otherwise

=

{

ψ(δλ)STψ(δλ)
∗ if µ = λ

0 otherwise,

and it follows by taking sums and limits that α is multiplicative on π(C0(E
0))′. It is

clearly ∗-preserving.
For (4), we let T ∈ ψe(C0(E

0))′ and calculate:

α(T )ψ(δλ) =
∑

µ∈E1

ψ(δµ)Tψ(δµ)
∗ψ(δλ) = ψ(δλ)Tπ(δr(λ)) = ψ(δλ)π(δr(λ))T = ψ(δλ)T.

Extending by linearity gives α(T )ψ(x) = ψ(x)T for x ∈ Xc(E), which suffices by conti-
nuity. If h ⊥ ψ(X)H, then ψ(δλ)

∗h = 0 for all λ, and α(T )h = 0. �

Suppose that {Sλ} ⊂ B(H) is a Toeplitz E-family for a product system (E,ϕ) of
graphs over a quasi-lattice ordered semigroup P . Proposition 6.3 implies that the cor-
responding Toeplitz representation ψ of X(E) is Nica covariant if and only if

(6.3)
(

∑

µ∈E1
p
SµS

∗
µ

)(

∑

ν∈E1
q
SνS

∗
ν

)

=

{

∑

λ∈E1
p∨q

SλS
∗
λ if p ∨ q <∞

0 otherwise.

The sums in (6.3) may be infinite, and then only converge in the strong operator topol-
ogy, so this is a spatial criterion rather than a C∗-algebraic one. When E is finitely
aligned, however, there is an equivalent condition which only uses finite sums.

Proposition 6.4. Let (E,ϕ) be a finitely aligned product system of graphs over a quasi-
lattice ordered semigroup P , and let {Sλ} ⊂ B(H) be a Toeplitz E-family. The cor-
responding Toeplitz representation ψ of X(E) is Nica covariant if and only if, for all
p, q ∈ P , µ ∈ E1

p and ν ∈ E1
q , we have

(6.4) S∗
µSν =

∑

µα=νβ∈MCE(µ,ν)

SαS
∗
β (which is 0 if p ∨ q = ∞).

Proof. First suppose ψ is Nica covariant, and let µ ∈ E1
p and ν ∈ E1

q . Then because the
Sλ corresponding to λ of the same degree have mutually orthogonal ranges, we have

S∗
µSν = S∗

µ

(

∑

γ∈E1
p
SγS

∗
γ

)(

∑

σ∈E1
q
SσS

∗
σ

)

Sν

=

{

S∗
µ

(
∑

λ∈E1
p∨q

SλS
∗
λ

)

Sν if p ∨ q <∞

0 if p ∨ q = ∞

=
∑

µα=νβ ∈ MCE(µ,ν)

SαS
∗
β,
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because (S∗
µSλ)(S

∗
λSν) = 0 unless λ = µα = νβ, and MCE(µ, ν) is empty if p ∨ q = ∞.

On the other hand, let p, q ∈ P and suppose that (6.4) holds. Then
(

∑

µ∈E1
p
SµS

∗
µ

)(

∑

ν∈E1
q
SνS

∗
ν

)

=
∑

µ∈E1
p ,ν∈E

1
q

Sµ

(

∑

µα=νβ∈MCE(µ,ν) SαS
∗
β

)

S∗
ν

which is
∑

{SλS
∗
λ : λ ∈ E1

p∨q} if p ∨ q < ∞ because the factorisation property implies
that each λ appears exactly once as a µα and as a νβ, and 0 if p∨ q = ∞ because then
each MCE(µ, ν) is empty. �

7. Toeplitz-Cuntz-Krieger families

Relation (6.4) is familiar: some version of it is used in every theory of Cuntz-Krieger
algebras to ensure that span{SµS

∗
ν} is a dense ∗-subalgebra of C∗({Sµ}) (see, for ex-

ample, [2, Lemma 2.2], [12, Lemma 1.1], [17, Proposition 3.5]). As Lemma 6.1 shows,
it is often automatic when the graphs are row-finite, but otherwise it will have to be
assumed if we want C∗({Sµ}) to behave like a Cuntz-Krieger algebra.

We therefore make the following definition:

Definition 7.1. Let E be a finitely aligned product system of graphs over a quasi-
lattice ordered semigroup P . Partial isometries {sλ : λ ∈ E1} in a C∗-algebra B form a
Toeplitz-Cuntz-Krieger E-family if:

(1) {sv : v ∈ E0} are mutually orthogonal projections,
(2) sλsµ = sλµ for all λ, µ ∈ E1 such that r(λ) = s(µ),
(3) s∗λsλ = sr(λ) for all λ ∈ E1,
(4) for all p ∈ P \ {e}, v ∈ E0 and every finite F ⊂ s−1

p (v), sv ≥
∑

λ∈F sλs
∗
λ,

(5) s∗µsν =
∑

µα=νβ ∈ MCE(µ,ν) sαs
∗
β for all µ, ν ∈ E1.

They form a Cuntz-Pimsner E-family if they also satisfy

(6) sv =
∑

λ∈s−1
p (v) sλs

∗
λ whenever s−1

p (v) is finite.

Remark 7.2. Multiplying both sides of (5) on the left by sµ and on the right by s∗ν gives

(7.1) (sµs
∗
µ)(sνs

∗
ν) =

∑

γ∈MCE(µ,ν)

sγs
∗
γ,

and this is equivalent to (5) because we can get back by multiplying on the left by s∗µ
and on the right by sν .

Remark 7.3. We have called families satisfying (6) Cuntz-Pimsner families rather than
Cuntz-Krieger families because of the problems with sinks mentioned in Remark 4.5:
if v is a sink in a single graph E, then (6) implies that sv = 0, whereas the generally
acccepted Cuntz-Krieger relations impose no relation at v. The Cuntz-Pimsner families
are the ones which correspond to Cuntz-Pimsner covariant representations of X(E).

Example 7.4 (The Fock representation). For λ ∈ E1, let Sλ be the partial isometry on
`2(E1) such that

Sλeµ :=

{

eλµ if r(λ) = s(µ)

0 otherwise.
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We claim that {Sλ : λ ∈ E1} is a Toeplitz-Cuntz-Krieger E-family. Conditions (1)–(3)
of Definition 7.1 are obvious, and (4) holds because

(7.2)
(

Sv −
∑

λ∈s−1
p (v)SλS

∗
λ

)

ev = ev

for all v ∈ E0 and p ∈ P \ {e}. To verify (5), we compute on the one hand

(

S∗
λSµeν |eσ

)

=
(

Sµeν |Sλeσ
)

=

{

1 if µν = λσ

0 otherwise,

and on the other hand,
(

∑

λα=µβ∈MCE(λ,µ)

SαS
∗
βeν

∣

∣

∣
eσ

)

=
∑

λα=µβ∈MCE(λ,µ)

(

S∗
βeν |S

∗
αeσ

)

=
∑

λα=µβ∈MCE(λ,µ)

{

1 if ν = βτ and σ = ατ for some τ

0 otherwise.

By the factorisation property, at most one term in this last sum can be nonzero, and
there is one precisely when λατ = µβτ for some λα = µβ ∈ MCE(λ, µ), giving (5).

If there is a vertex v which emits just finitely many edges in some Ep, then (7.2)
implies that (6) does not hold, and hence {Sλ} is not a Cuntz-Pimsner family.

If (E,ϕ) is finitely aligned, then Theorem 4.2 and Proposition 6.4 imply that the
Toeplitz E-family {iX(E)(δλ) : λ ∈ E1} in Tcov(X(E)) is a Toeplitz-Cuntz-Krieger E-
family. It then follows from Lemma 2.1 that Tcov(X(E)) is generated by {iX(E)(δλ)}.
We can now apply the other direction of Theorem 4.2 to see that Tcov(X(E)) is universal
for Toeplitz-Cuntz-Krieger E-families. Thus:

Corollary 7.5. Let (E,ϕ) be a finitely aligned product system of graphs over a quasi-
lattice ordered semigroup P . Then (Tcov(X(E)), {iX(E)(δλ)}) is universal for Toeplitz-
Cuntz-Krieger E-families.

In view of Corollary 7.5, we define T C∗(E) to be the universal algebra Tcov(X(E)).
If there are no sinks, we define C∗(E) to be the quotient of T C∗(E) which is universal
for Cuntz-Pimsner E-families. If Λ is a row-finite k-graph with no sources, it follows
from Lemma 6.1 that C∗(EΛ) is the C∗-algebra C∗(Λ) studied in [11].

From now on, we denote by {sλ : λ ∈ E1} the canonical generating family in T C∗(E),
and if {tλ : λ ∈ E1} is a Toeplitz-Cuntz-Krieger E-family in a C∗-algebra B, then we
write πt for the homomorphism of T C∗(E) into B such that πt(sλ) = tλ.

We now see what Fowler’s theory tells us about faithful representations.

Proposition 7.6. Let (G,P ) be quasi-lattice ordered with G amenable, and let (E,ϕ)
be a finitely aligned product system of graphs over P . Let {Sλ : λ ∈ E1} be a Toeplitz-
Cuntz-Krieger E-family in B(H), and suppose that for every finite subset R of P \ {e}
and every v ∈ E0, we have

(7.3)
∏

p∈R

(

Sv −
∑

λ∈s−1
p (v)SλS

∗
λ

)

> 0.

Then the corresponding representation πS : T C∗(E) → B(H) is faithful.
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Proof. We consider the representation ψ of X(E) associated to {Sλ}. Theorem 5.4 says
that X(E) is compactly aligned, and Proposition 6.4 that ψ is Nica covariant. Since the
δv span a dense subspace of C0(E

0) and the ψe(δv) = Sv are mutually orthogonal, Propo-
sition 6.3 implies that (7.3) is equivalent to the displayed hypothesis in [5, Theorem 7.2].
Thus [5, Theorem 7.2] implies that ψ∗ is faithful on Tcov(X(E)). But πS is by definition
the representation ψ∗ of T C∗(E) := Tcov(X(E)). �

Corollary 7.7. Let (G,P ) be a quasi-lattice ordered group such that G is amenable, and
let (E,ϕ) be a finitely aligned product system of graphs over P . Then the representation
πS of T C∗(E) associated to the Fock representation of Example 7.4 is faithful.

Proof. Equation (7.3) follows from (7.2). �

8. A C∗-algebraic uniqueness theorem

Theorem 8.1. Let (G,P ) be a quasi-lattice ordered group such that G is amenable, and
let (E,ϕ) be a finitely aligned product system of graphs over P . Let {tλ : λ ∈ E1} be a
Toeplitz-Cuntz-Krieger E-family in a C∗-algebra B. Suppose that for every finite subset
R of P \ {e}, every v ∈ E0, and every collection of finite sets Fp ⊂ s−1

p (v), we have

(8.1)
∏

p∈R

(

tv −
∑

λ∈Fp
tλt

∗
λ

)

> 0.

Then the associated homomorphism πt : T C∗(E) → B is injective.

To prove Theorem 8.1, we first establish that there is a linear map ΦE onto the
diagonal in T C∗(E) which is faithful on positive elements, and show that there is a
norm-decreasing linear map ΦB on πt(T C

∗(E)) such that πt ◦ ΦE = ΦB ◦ πt.

Proposition 8.2. There is a linear map ΦE : T C∗(E) → T C∗(E) such that

ΦE(sλs
∗
µ) =

{

sλs
∗
λ if λ = µ

0 otherwise,

and ΦE is faithful on positive elements.

Proof. Let {ei : i ∈ I} be an orthonormal basis for H, and for i ∈ I, let Pi be the
projection onto Cei. Then for T ∈ B(H),

∑

i∈I PiTPi converges in the strong operator
topology, and T 7→

∑

i∈I PiTPi is the diagonal map on B(H) which takes the rank-one
operator Θei,ej

to Θei,ei
if i = j and to 0 otherwise. It follows that this diagonal map is

linear and norm-decreasing, and it is faithful on positive elements: Φ(T ∗T ) = 0 implies
(T ∗Tei|ei) = 0 for all i, and hence T = 0.

Let H := `2(E1) and let {Sλ : λ ∈ E1} be the Toeplitz-Cuntz-Krieger family of
Example 7.4. Then a calculation using the basis elements {eν : ν ∈ E1} shows that

PγSλS
∗
µPγ =

{

Pγ if λ = µ = γ(e, d(µ))

0 otherwise.

Thus if Φ denotes the diagonal map on `2(E1), then

Φ(SλS
∗
µ) = Pspan{eγ :λ=µ=γ(e,d(µ))} =

{

SλS
∗
λ if λ = µ

0 otherwise.
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Because the representation πS associated to the Fock representation is faithful by Cor-
ollary 7.7, and because Φ has the required properties, we can pull Φ back to T C∗(E) to
get the required map ΦE . �

We must now establish the existence of ΦB : πt(T C
∗(E)) → πt(T C

∗(E)) and show
that πt is faithful on ΦE(T C∗(E)). To do this, we analyse the structure of the diagonal
ΦE(T C∗(E)). Since T C∗(E) is spanned by elements of the form sλs

∗
µ, we consider the

image of span{sλs
∗
µ : λ, µ ∈ E1} in the diagonal. We show that for a finite subset F

of E1, C∗({tλt
∗
λ : λ ∈ F}) sits inside a finite-dimensional diagonal subalgebra of B,

and use the matrix units in this diagonal subalgebra to show that ΦB exists and is
norm-decreasing. We can then show that πt is faithful on span{sλs

∗
λ : λ ∈ E1} just by

checking that the matrix units are nonzero.
Condition (5) of Definition 7.1 shows that C∗({tλt

∗
λ : λ ∈ F}) is typically bigger than

span{tλt
∗
λ : λ ∈ F}; the two can only be equal if λ, µ ∈ F implies MCE(λ, µ) ⊂ F . Thus

we need to pass to a larger finite set H such that λ, µ ∈ H imply MCE(λ, µ) ⊂ H .

Definition 8.3. For each finite subset F of E1, let

MCE(F ) := {λ ∈ E1 : d(λ) =
∨

α∈Fd(α) and λ(e, d(α)) = α for all α ∈ F},

and let ∨F :=
⋃

G⊂F MCE(G).

Definition 8.3 is consistent with Definition 5.3, since MCE({λ, µ}) = MCE(λ, µ).

Lemma 8.4. Let F be a finite subset of E1. Then

(1) F ⊂ ∨F ;
(2) ∨F is the union of the disjoint sets ∨{λ ∈ F : s(λ) = v} over v ∈ s(F );
(3) ∨F is finite; and
(4) G ⊂ ∨F implies MCE(G) ⊂ ∨F .

Proof. (1) For λ ∈ F , {λ} ⊂ F and λ ∈ MCE({λ}).
(2) If λ, µ ∈ G and s(λ) 6= s(µ), then MCE(G) is empty.
(3) It suffices to show that if F ⊂ E1 is finite, then MCE(F ) is finite. When |F | = 1,

this assertion is trivial. Suppose as an inductive hypothesis that MCE(F ) is finite
whenever |F | ≤ k for some k ≥ 1, and suppose that |F | = k + 1. Let λ ∈ F , and let
F ′ := F \ {λ}. Suppose that γ ∈ MCE(F ). Since γ(e,

∨

α∈F ′ d(α)) ∈ MCE(F ′), we have
γ ∈ MCE(λ, µ) for some µ ∈ MCE(F ′). Hence |MCE(F )| ≤

∑

µ∈MCE(F ′) |MCE(λ, µ)|.

Each term in this sum is finite because (E,ϕ) is finitely aligned, and the sum has only
finitely many terms by the inductive hypothesis. Hence MCE(F ) is finite.

(4) Let G ⊂ ∨F and for α ∈ G choose Gα ⊂ F such that α ∈ MCE(Gα). Let
H :=

⋃

α∈GGα. We will show that MCE(G) ⊂ MCE(H) ⊂ ∨F . Suppose λ ∈ MCE(G).

Then d(λ) =
∨

α∈G d(α) =
∨

α∈G

(
∨

β∈Gα
d(β)

)

=
∨

β∈H d(β). For β ∈ H , choose α ∈ G

such that β ∈ Gα. Then λ(e, d(β)) = α(e, d(β)) = β. Thus λ ∈ MCE(H). �

It follows from Lemma 8.4(4) that λ, µ ∈ ∨F implies that MCE(λ, µ) ⊂ ∨F . Conse-
quently, Lemma 8.4(1) and (7.1) imply that

C∗({tλt
∗
λ : λ ∈ F}) ⊂ C∗({tλt

∗
λ : λ ∈ ∨F}) = span{tλt

∗
λ : λ ∈ ∨F}.

To write this as a diagonal matrix algebra, we need to be able to orthogonalise the range
projections associated to the edges in ∨F .
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Lemma 8.5. Let λ ∈ E1. If F ⊂ s−1(r(λ)) is finite and r(λ) 6∈ F , then

tλt
∗
λ

(

∏

µ∈F

(ts(λ) − tλµt
∗
λµ)

)

> 0.

Proof. We have
∥

∥

∥
tλt

∗
λ

(

∏

µ∈F

(ts(λ) − tλµt
∗
λµ)

)
∥

∥

∥
=

∥

∥

∥

∏

µ∈F

(tλt
∗
λ − tλµt

∗
λµ)

∥

∥

∥
=

∥

∥

∥
tλ

(

∏

µ∈F

(tr(λ) − tµt
∗
µ)

)

t∗λ

∥

∥

∥
,

which is nonzero by (8.1). �

We now define our matrix units. First note that (7.1) for the Toeplitz-Cuntz-Krieger
family {tλ} implies that the range projections tλt

∗
λ commute with each other. Thus for

every finite subset F of E1 and every λ ∈ ∨F , the operator Q∨F
λ defined by

Q∨F
λ := tλt

∗
λ

(

∏

λα∈∨F, d(α)6=e

(ts(λ) − tλαt
∗
λα)

)

is a projection which commutes with every tµt
∗
µ.

Proposition 8.6. Let F be a finite subset of E1 such that λ ∈ F implies s(λ) ∈ F .
Then {Q∨F

λ : λ ∈ ∨F} is a collection of nonzero mutually orthogonal projections in B

such that span{Q∨F
λ : λ ∈ ∨F} = span{tλt

∗
λ : λ ∈ ∨F}. In particular,

(8.2)
∑

λ∈∨F

Q∨F
λ =

∑

v∈s(F )

tv.

The key to proving Proposition 8.6 is establishing (8.2), which we do by induction on
|F |. This requires two technical lemmas.

Lemma 8.7. Let F be as in Proposition 8.6, suppose λ ∈ F \E0 and let G := F \ {λ}.
Then for every γ ∈ ∨F \ ∨G there is a unique µγ ∈ ∨G such that

(8.3) if µ ∈ ∨G and γ(e, d(µ)) = µ then d(µ) ≤ d(µγ).

We then have γ ∈ MCE(µγ, λ); in particular, d(γ) = d(µγ) ∨ d(λ).

Proof. For γ ∈ ∨F \ ∨G, let (∨G)γ := {µ ∈ ∨G : γ(e, d(µ)) = µ}, which is nonempty
because s(γ) ∈ (∨G)γ . For every µ ∈ (∨G)γ , d(µ) ≤ d(γ), so d :=

∨

µ∈(∨G)γ
d(µ)

satisfies d ≤ d(γ). Lemma 8.4(4) shows that γ(e, d) ∈ ∨G, and then µγ := γ(e, d) has
the required property. To see that γ ∈ MCE(µγ, λ), notice that γ ∈ ∨F \ ∨G implies
γ ∈ MCE(µ, λ) for some µ ∈ ∨G. Thus µ ∈ (∨G)γ , d(µ) ≤ d(µγ), and

d(γ) = d(µ) ∨ d(λ) ≤ d(µγ) ∨ d(λ).

On the other hand, we have d(γ) ≥ d(µγ) by definition, and d(γ) ≥ d(λ) since γ ∈
MCE(λ, µ). Hence d(γ) = d(µγ) ∨ d(λ), and γ ∈ MCE(µγ, λ). �

Lemma 8.8. Let F be as in Proposition 8.6, suppose λ ∈ F \E0 and let G := F \ {λ}.
Then for each δ ∈ ∨F \ ∨G,

(8.4) Q∨F
δ = Q∨G

µδ
tδt

∗
δ.

Proof. We shall show that

(1) Q∨F
δ = Q∨G

µδ
Q∨F
δ , and
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(2) Q∨G
µδ
tδεt

∗
δε = 0 whenever δε ∈ ∨F and d(ε) 6= e,

and then use these to prove (8.4).
To prove (1), let δ ∈ ∨F \ ∨G. Since tµδ

t∗µδ
≥ tδt

∗
δ ,

Q∨G
µδ
Q∨F
δ = tδt

∗
δ

(

∏

µδν∈∨G, d(ν)6=e

(ts(δ) − tµδνt
∗
µδν

)
)

Q∨F
δ .

Suppose µδν ∈ ∨G and d(ν) 6= e. Then

tδt
∗
δ(ts(δ) − tµδνt

∗
µδν

) = tδt
∗
δ −

∑

γ∈MCE(δ,µδν)

tγt
∗
γ by (7.1).

Now suppose γ ∈ MCE(δ, µδν). Then d(µγ) ≥ d(µδν) because µδν ∈ ∨G, and d(µδν) >
d(µδ) because d(ν) 6= e. In particular γ 6= δ. But γ(e, d(δ)) = δ because γ ∈
MCE(δ, µδν). Hence there exists ε ∈ E1 such that d(ε) 6= e and γ = δε. Since δ

and µδν are in ∨F , Lemma 8.4(4) ensures that γ ∈ ∨F , so ts(δ) − tγt
∗
γ is a factor in Q∨F

δ ,

and tγt
∗
γQ

∨F
δ = 0. Thus

tδt
∗
δ(ts(δ) − tµδνt

∗
µδν

)Q∨F
δ = tδt

∗
δQ

∨F
δ −

(

∑

γ∈MCE(δ,µδν)

tγt
∗
γ

)

Q∨F
δ = Q∨F

δ .

Applying this equation to each µδν ∈ ∨G with d(ν) 6= e establishes (1).
To prove (2), suppose that δε ∈ ∨F with d(ε) 6= e. Then µδε ∈ ∨G, and µδε 6= µδ:

if µδε = µδ, then d(δε) = d(λ) ∨ d(µδε) = d(λ) ∨ d(µδ) = d(δ), contradicting d(ε) 6= e.
However, (δε)(e, d(µδ)) = δ(e, d(µδ)) = µδ, so Lemma 8.7 implies that d(µδ) < d(µδε),
and µδε = µδα for some α with d(α) 6= e. Since µδε ∈ ∨G, it follows that

Q∨G
µδ
tδεt

∗
δε ≤ (ts(µδ) − tµδαt

∗
µδα

)tδεt
∗
δε,

which vanishes because µδα = (δε)(e, d(µδε)). This gives (2).
To finish off, we compute:

Q∨F
δ = Q∨G

µδ
Q∨F
δ by (1)

= Q∨G
µδ

(

∏

δε∈∨F, d(ε)6=e

(ts(µδ) − tδεt
∗
δε)

)

tδt
∗
δ

= Q∨G
µδ
tδt

∗
δ by (2). �

Proof of Proposition 8.6. The Q∨F
λ are nonzero by Lemma 8.5. To see that the Q∨F

λ are
orthogonal, suppose that λ 6= µ ∈ ∨F . If d(λ) = d(µ) then Q∨F

λ Q∨F
µ ≤ tλt

∗
λtµt

∗
µ = 0

by (4) of Definition 7.1. So suppose that d(λ) 6= d(µ). We can assume without loss
of generality that d(λ) ∨ d(µ) > d(λ). Then γ ∈ MCE(λ, µ) implies γ = λα where
d(α) 6= e, and γ ∈ ∨F by Lemma 8.4(4). Thus (7.1) shows that

Q∨F
λ Q∨F

µ ≤
(

∑

γ∈MCE(λ,µ)

tγt
∗
γ

)

Q∨F
λ = 0.
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Assuming that (8.2) has been established, let λ ∈ ∨F and calculate:

tλt
∗
λ = tλt

∗
λ

(

∑

µ∈∨F

Q∨F
µ

)

by (8.2)

=
∑

µ∈∨F

(

tλt
∗
λtµt

∗
µ

(

∏

µα∈∨F, d(α)6=e

(ts(µ) − tµαt
∗
µα)

))

=
∑

µ∈∨F

((

∑

γ∈MCE(λ,µ)

tγt
∗
γ

)(

∏

µα∈∨F, d(α)6=e

(ts(µ) − tµαt
∗
µα)

))

.(8.5)

Suppose µ ∈ ∨F and µ 6= λλ′ for any path λ′, and that γ ∈ MCE(λ, µ). Lemma 8.4(4)
ensures that γ ∈ ∨F , and γ 6= µ because µ 6= λλ′. Thus γ = µα for some path α such
that d(α) 6= e. Hence the product in (8.5) vanishes for such µ, and (8.5) collapses to

tλt
∗
λ =

∑

λλ′∈∨F

Q∨F
λλ′ .

It therefore suffices to establish (8.2). Indeed, Q∨F
λ ≤ s(λ) for all λ, so Lemma 8.4(2)

shows that it suffices to establish (8.2) when F ⊂ s−1(v) for some v ∈ E0. We do this by
induction on |F |. Recall that λ ∈ F implies s(λ) ∈ F , so if |F | = 1 then F = ∨F = {v}
and Q∨F

v = tv.
Suppose that |F | = k+1 ≥ 2, and that the proposition holds for all subsets of s−1(v)

containing v and having at most k elements. Since |F | > 1 there exists λ 6= v in F . Let
G := F \ {λ}. For µ ∈ ∨G, we have

Q∨F
µ = tµt

∗
µ

(

∏

µα∈∨G, d(α)6=e

(

tv − tµαt
∗
µα

)

)(

∏

γ=µβ∈∨F\∨G

(

tv − tγt
∗
γ

)

)

.

Suppose that tv − tγt
∗
γ is a factor in the second product and µγ 6= µ. Then µγ = µα

for some α such that d(α) 6= e because µγ is the maximal subpath of γ in ∨G. Thus
tv − tγt

∗
γ is larger than the factor tv − tµγ t

∗
µγ

from the first product. So such terms in
the second product can be deleted without changing the product, and we have

Q∨F
µ = Q∨G

µ

(

∏

γ∈∨F\∨G,µγ=µ

(tv − tγt
∗
γ)

)

.

Thus
∑

λ∈∨F

Q∨F
λ =

∑

µ∈∨G

Q∨G
µ

(

∏

γ∈∨F\∨G,µγ=µ

(tv − tγt
∗
γ)

)

+
∑

δ∈∨F\∨G

Q∨F
δ

=
∑

µ∈∨G

(

Q∨G
µ

(

∏

γ∈∨F\∨G, µγ=µ

(tv − tγt
∗
γ)

)

+
∑

δ∈∨F\∨G, µδ=µ

Q∨F
δ

)

by Lemma 8.7, and Lemma 8.8 gives
∑

λ∈∨F

Q∨F
λ =

∑

µ∈∨G

(

Q∨G
µ

(

∏

γ∈∨F\∨G, µγ=µ

(tv − tγt
∗
γ)

)

+
∑

δ∈∨F\∨G, µδ=µ

Q∨G
µδ
tδt

∗
δ

)

=
∑

µ∈∨G

Q∨G
µ

((

∏

γ∈∨F\∨G, µγ=µ

(tv − tγt
∗
γ)

)

+
∑

δ∈∨F\∨G, µδ=µ

tδt
∗
δ

)

.(8.6)
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If µ ∈ ∨G and δ ∈ ∨F \ ∨G satisfies µδ = µ, then Lemma 8.7 implies that d(δ) =
d(µ)∨d(λ). Thus {tδt

∗
δ : µδ = µ} are mutually orthogonal, and (8.6) is just

∑

µ∈∨GQ
∨G
µ .

Applying the inductive hypothesis to G now establishes (8.2) for the given F . �

Proposition 8.9. There is a norm-decreasing linear map

ΦB : C∗({tλ : λ ∈ E1}) → span{tλt
∗
λ : λ ∈ E1}

such that ΦB ◦ πt = πt ◦ ΦE.

Proof. It suffices to show that if F ⊂ E1 is finite and {αλ,µ : λ, µ ∈ F} ⊂ C, then
∥

∥

∑

λ,µ∈F αλ,µtλt
∗
µ

∥

∥ ≥
∥

∥

∑

λ∈F αλ,λtλt
∗
λ

∥

∥.

Since
∑

γ∈F Q
∨F
γ =

∑

v∈s(F ) tv and the Q∨F
γ commute with the tλt

∗
λ, there exists

γ ∈ ∨F such that

(8.7)
∥

∥

∥
Q∨F
γ

(

∑

λ∈F

αλ,λtλt
∗
λ

)
∥

∥

∥
=

∥

∥

∥

∑

λ∈F

αλ,λtλt
∗
λ

∥

∥

∥
.

If λ ∈ F and γ 6= λβ for any β, then δ ∈ MCE(λ, γ) implies d(δ) > d(γ), giving

Q∨F
γ tλ = Q∨F

γ tλt
∗
λtλ =

(

∏

γβ∈∨F, d(β)6=e

(

tγt
∗
γ − tγβt

∗
γβ

)

)(

∑

δ∈MCE(γ,λ)

tδt
∗
δ

)

tλ = 0.

Thus

Q∨F
γ

(

∑

λ,µ∈F

αλ,µtλt
∗
µ

)

Q∨F
γ = Q∨F

γ

(

∑

λ,µ∈F
γ(e,d(λ))=λ
γ(e,d(µ))=µ

αλ,µtλt
∗
µ

)

Q∨F
γ .

In particular, notice that for λ ∈ ∨F ,

(8.8) Q∨F
γ tλt

∗
λ =

{

Q∨F
γ if d(γ) ≥ d(λ) and γ(e, d(λ)) = λ

0 otherwise.

We will replace Q∨F
γ with a smaller nonzero projection Qγ so that the remaining

off-diagonal terms are eliminated. Since 0 < Qγ ≤ Q∨F
γ , we will then have

(8.9) Qγtλt
∗
λ =

{

Qγ if d(γ) ≥ d(λ) and γ(e, d(λ)) = λ

0 otherwise,

which, in conjunction with (8.8), will imply that

(8.10)
∥

∥

∥
Qγ

(

∑

λ∈F

αλ,λtλt
∗
λ

)
∥

∥

∥
=

∣

∣

∣

∑

λ∈F, d(λ)≤d(γ),
γ(e,d(λ))=λ

αλ,λ

∣

∣

∣
=

∥

∥

∥
Q∨F
γ

(

∑

λ∈F

αλ,λtλt
∗
λ

)
∥

∥

∥
.

To produce Qγ , we consider pairs λ, µ ∈ ∨F such that γ(e, d(λ)) = λ and γ(e, d(µ)) =
µ. For each such (λ, µ), factorise γ as λλ′ = γ = µµ′, and define

dγ(λ, µ) :=
{

σ : σ = δ(d(λ′), d(δ)) or σ = δ(d(µ′), d(δ)) for some δ ∈ MCE(λ′, µ′)
}

.

Now λ′ and µ′ are uniquely determined by λ, µ and γ, each MCE(λ′, µ′) is finite, and
δ(d(λ′), d(δ)) and δ(d(µ′), d(δ)) are uniquely determined by δ ∈ MCE(λ′, µ′), so each



PRODUCT SYSTEMS OF GRAPHS 21

dγ(λ, µ) is finite. Let

Qγ := Q∨F
γ

∏

λ6=µ∈∨F, γ(e,d(λ))=λ,
γ(e,d(µ))=µ, σ∈dγ (λ,µ)

(

tγt
∗
γ − tγσt

∗
γσ

)

.

Lemma 8.5 implies Qγ > 0, and Qγ ≤ Q∨F
γ by definition, so we have (8.9) and (8.10).

For λ, µ ∈ ∨F with λλ′ = γ = µµ′ and λ 6= µ, we calculate:

Qγtλt
∗
µQγ = Qγ(tλ(tλ′t

∗
λ′tµ′t

∗
µ′)t

∗
µ)Qγ

= Qγ

(

tλ

(

∑

ν∈MCE(λ′,µ′)

tνt
∗
ν

)

t∗µ

)

Qγ,

which vanishes because ν ∈ MCE(λ′, µ′) implies that λν = γσ for some σ ∈ dγ(λ, µ).
Thus

∥

∥

∥

∑

λ,µ∈F

αλ,µtλt
∗
µ

∥

∥

∥
≥

∥

∥

∥
Qγ

(

∑

λ,µ∈F

αλ,µtλt
∗
µ

)

Qγ

∥

∥

∥

=
∥

∥

∥
Qγ

(

∑

λ∈F

αλ,λtλt
∗
λ

)

Qγ

∥

∥

∥

=
∥

∥

∥
Q∨F
γ

(

∑

λ∈F

αλ,λtλt
∗
λ

)
∥

∥

∥
by (8.10)

=
∥

∥

∥

∑

λ∈F

αλ,λtλt
∗
λ

∥

∥

∥
by (8.7). �

Proof of Theorem 8.1. It suffices to show that if F is a finite subset of E1 and

a =
∑

λ,µ∈F

αλ,µsλs
∗
µ,

then πt(a) = 0 implies a = 0. Suppose πt(a) = 0. Then πt(a
∗a) = 0, ΦB(πt(a

∗a)) = 0,
and Proposition 8.9 implies that πt(Φ

E(a∗a)) = 0. Now ΦE(a∗a) belongs to D :=
span{sλs

∗
λ : λ ∈ ∨F}, and applying Proposition 8.6 to the universal Toeplitz-Cuntz-

Krieger E-family {sλ} shows that D is a finite-dimensional diagonal matrix algebra
with matrix units

{

eλ,λ := sλs
∗
λ

(

∏

λα∈∨F, d(α)6=e

(ss(λ) − sλαs
∗
λα)

)

: λ ∈ ∨F
}

.

Lemma 8.5 implies that πt(eλ,λ) 6= 0 for λ ∈ ∨F , so πt is faithful on D. In particular
‖ΦE(a∗a)‖ = ‖πt(Φ

E(a∗a))‖ = 0. Proposition 8.2 now shows that a∗a = 0, and hence
a = 0. �

9. The C∗-algebra of an infinite k-graph

We show how the finitely-aligned hypothesis, relation (5) of Definition 7.1, and the
hypothesis (8.1) in Theorem 8.1 all simplify when the underlying semigroup is Nk. We
then prove a uniqueness theorem for the C∗-algebras of k-graphs in which every vertex
receives infinitely many paths of every degree.
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9.1. Product systems of graphs over Nk.

Lemma 9.1. Let (E,ϕ) be a product system of graphs over Nk. Then (E,ϕ) is finitely
aligned if and only if

(9.1) MCE(µ, ν) is finite for every pair µ ∈ E1
ei

and ν ∈ E1
ej

with i 6= j.

Proof. Every finitely aligned system trivially satisfies (9.1). For the reverse implication,
suppose E satisfies (9.1). Then MCE(µ, ν) is finite whenever |d(µ)∨d(ν)| ≤ 2 . Suppose
as an inductive hypothesis that MCE(µ, ν) is finite whenever |d(µ) ∨ d(ν)| ≤ n, and
consider µ ∈ E1

p , ν ∈ E1
q with |p ∨ q| = n+ 1.

If the coordinate-wise minimum p ∧ q of p and q is nonzero, then either µ(0, p ∧ q) 6=
ν(0, p ∧ q), in which case the factorisation property implies MCE(µ, ν) = ∅, or

MCE(µ, ν) =
{

µ(0, p ∧ q)γ : γ ∈ MCE(µ(p ∧ q, p), ν(p ∧ q, q))
}

is finite by the inductive hypothesis. Thus we may assume that p ∧ q = 0, and hence
that p ∨ q = p + q. If p ≥ q or q ≥ p then MCE(µ, ν) has at most one element. So we
may further assume that there exist i 6= j such that pi > qi and qj > pj. Since p∧q = 0,
this implies that pj = qi = 0.

Now let γ ∈ MCE(µ, ν). Then d(γ)− ei = p+ q− ei = (p− ei)∨ q since qi = 0. Thus
γi := γ(0, d(γ) − ei) satisfies

γi(0, p− ei) = γ(0, p− ei) = µ(0, p− ei) and γi(0, q) = γ(0, q) = ν,

so γi ∈ MCE(µ(0, p−ei), ν). Similarly, γj := γ(0, d(γ)−ej) ∈ MCE(µ, ν(0, q−ej)). But
now p∨ q = d(γi) + ei = d(γj) + ej, and since i 6= j, it follows that d(γ) = d(γi)∨ d(γj).
Furthermore, γ(0, d(γi)) = γi and γ(0, d(γj)) = γj, so γ ∈ MCE(γi, γj). Hence

|MCE(µ, ν)| ≤
∑

γi∈MCE(µ(0,p−ei),ν)
γj∈MCE(µ,ν(0,q−ej))

|MCE(γi, γj)|.

By the inductive hypothesis, MCE(µ(0, p − ei), ν) and MCE(µ, ν(0, q − ej)) are finite,
so the sum has only finitely many terms. Thus we take γi ∈ MCE(µ(0, p− ei), ν) and
γj ∈ MCE(µ, ν(0, q − ej)), and show that MCE(γi, γj) is finite. If it is nonempty, then
the initial segments of degree (p∨q)−ei−ej of γi and γj are the same; call it β, and write
γi = βγ′i, γj = βγ′j. Then d(γ′i) = ei and d(γ′j) = ej , so |MCE(γi, γj)| = |MCE(γ′i, γ

′
j)|

is finite by (9.1). �

Lemma 9.2. Let (E,ϕ) be a finitely aligned product system of graphs over Nk. Then a
Toeplitz E-family {tλ} is a Toeplitz-Cuntz-Krieger E-family if and only if

(9.2) t∗µtν =
∑

µα=νβ∈MCE(µ,ν)

tαt
∗
β

for every µ ∈ E1
ei

and ν ∈ E1
ej

with s(µ) = s(ν) and i 6= j.

Proof. Since (9.2) is a special case of Definition 7.1(5), we have to show that (9.2) implies
Definition 7.1(5). If |d(µ) ∨ d(ν)| ≤ 2, this is trivially true. Suppose as an inductive
hypothesis that (6.4) holds whenever |d(µ)∨ d(ν)| ≤ n for some n ≥ 2. Suppose µ ∈ E1

p

and ν ∈ E1
q where p and q satisfy |p ∨ q| = n + 1. We give separate arguments for

p ∧ q 6= 0 and p ∧ q = 0.
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If p ∧ q 6= 0, then

t∗µtν = t∗µ(p∧q,p)t
∗
µ(0,p∧q)tν(0,p∧q)tν(p∧q,q)

=

{

t∗µ(p∧q,p)tν(p∧q,q) if µ(0, p ∧ q) = ν(0, p ∧ q)

0 otherwise.
(9.3)

The set MCE(µ, ν) is empty unless µ(0, p ∧ q) = ν(0, p ∧ q), and if so we have

MCE(µ, ν) =
{

µ(0, p ∧ q)γ : γ ∈ MCE(µ(p ∧ q, p), ν(p ∧ q, q))
}

.

Applying the inductive hypothesis to (9.3) gives Definition 7.1(5).
Now suppose p ∧ q = 0, or equivalently that p ∨ q = p + q. Since |p ∨ q| ≥ 3, we can

assume that |q| ≥ 2. If p ≥ q then (6.4) is trivial, so we may further assume that there
exists i such that qi > pi, and then p∧q = 0 forces pi = 0. In particular, |p∨(q−ei)| = n,
and the inductive hypothesis gives

t∗µtν = t∗µtν(0,q−ei)tν(q−ei,q) =
(

∑

µδ=ν(0,q−ei)ε∈MCE(µ,ν(0,q−ei))

tδt
∗
ε

)

tν(q−ei,q).

Each ε appearing in this sum has d(ε) = p, so d(ε) ∨ d(ν(q − ei, q) = p + ei, which has
length at most n because |q| ≥ 2. Thus we can apply the inductive hypothesis to each
summand to get

(9.4) t∗µtν =
∑

µδ=ν(0,q−ei)ε∈MCE(µ,ν(0,q−ei))
εσ=ν(q−ei,q)τ∈MCE(ε,ν(q−ei,q))

tδσt
∗
τ .

It remains to show that the pairs (δσ, τ) arising in this sum are precisely the pairs (α, β)
arising in the right-hand side of (6.4). Given (δσ, τ), we certainly have

µδσ = ν(0, q − ei)εσ = ν(0, q − ei)ν(q − ei, q)τ = ντ,

and d(δσ) = d(δ) + d(σ) = q − ei + ei = q, so µδσ ∈ MCE(µ, ν). Conversely, given
(α, β), we take δ := α(0, q − ei), σ := α(q − ei, q) and τ := β. �

Lemma 9.3. Let E be a finitely aligned product system of graphs over Nk. Then a
Toeplitz E-family {tλ} satisfies (8.1) if and only if

(9.5)

k
∏

m=1

(

tv −
∑

λ∈Gm

tλt
∗
λ

)

> 0

for every choice of finite sets Gm ⊂ s−1
em

(v).

Proof. The necessity of (9.5) is obvious. Suppose (9.5) holds, and R, v and Fp are as in
Theorem 8.1. For p ∈ R, choose ip such that pip > 0, and for each m, set

Gm :=
⋃

{p∈R:ip=m}

{λ(0, em) : λ ∈ Fp}.
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Then each Gm is a finite subset of s−1
em

(v), and
∏

p∈R

(

tv −
∑

λ∈Fp

tλt
∗
λ

)

≥
∏

p∈R

(

tv −
∑

λ∈Fp

tλ(0,eip )t
∗
λ(0,eip )

)

=
k

∏

m=1

(

tv −
∑

µ∈Gm

tµt
∗
µ

)

,

which is nonzero by (9.5). �

9.2. The C∗-algebra of an infinite k-graph. If (Λ, d) is a k-graph, and λ, µ ∈ Λ,
we regard MCE(λ, µ) ⊂ (EΛ)1 as a subset of Λ. In view of Lemma 9.2, we say that
Λ is finitely aligned if MCE(λ, µ) is finite whenever d(λ) = ei and d(µ) = ej. By a
Toeplitz-Cuntz-Krieger Λ-family we mean a Toeplitz-Cuntz-Krieger EΛ-family. If Λ has
no sources, so that the graphs in EΛ have no sinks, then we define a Cuntz-Krieger
Λ-family to be a Cuntz-Pimsner EΛ-family. We have only made this last definition
for k-graphs without sources to avoid clashing with the definitions given for row-finite
graphs in [17]; for row-finite k-graphs without sources, therefore, our C∗(EΛ) coincides
with the graph algebra C∗(Λ) used in [11] and [17].

Recall that Λn(v) := {λ ∈ Λ : d(λ) = n and cod(λ) = v}. If |Λei(v)| = ∞ for every
v ∈ Λ0, and every 1 ≤ i ≤ k, then conditions (6) and (4) of Definition 7.1 are equivalent,
so Theorem 8.1 gives a uniqueness theorem for C∗(Λ).

Corollary 9.4. Let (Λ, d) be a finitely aligned k-graph such that |Λei(v)| = ∞ for every
v ∈ Λ0 and 1 ≤ i ≤ k. Let {tλ : λ ∈ Λ} be a Cuntz-Krieger Λ-family such that tv 6= 0
for all v ∈ Λ0. Then the representation πt of C∗(Λ) := C∗(EΛ) is faithful.

Proof. That each |Λei(v)| = ∞ implies both that C∗(EΛ) = T C∗(EΛ), and that Λ has no
sources, so that C∗(Λ) := C∗(EΛ). Lemma 9.1 implies that (EΛ, ϕΛ) is finitely aligned.
To establish (8.1), we fix v ∈ Λ0 and finite sets Gm ⊂ Λem(v) for 1 ≤ m ≤ k. By
Lemma 9.3, it suffices to show that

k
∏

m=1

(

tv −
∑

λ∈Gm

tλt
∗
λ

)

> 0.

We shall construct paths µm ∈ Λ(v) of degree
∑m

i=1 ei for m ≤ k such that µm(0, ei)
does not belong to Gi for 1 ≤ i ≤ m. We take µ1 to be any edge of degree e1 which is
not in G1. If we have µm, then because the set Λem+1(dom(µm)) is infinite, there is a
path µm+1 = µmα of degree

∑m+1
i=1 ei which is not in the finite set

⋃

λ∈Gm+1
MCE(µm, λ).

Then µm+1(0, ei) = µm(0, ei) is not in Gi for i ≤ m, and µm+1(0, em+1) cannot be in
Gm+1 because µm+1 ∈ MCE(µm, µ(0, em+1)).

Now for λ ∈ Gi, we have MCE(λ, µk) = ∅, and relation (5) of Definition 7.1 in the
form (7.1) gives tλt

∗
λtµk

t∗µk
= 0. Thus

k
∏

m=1

(

tv −
∑

λ∈Gm

tλt
∗
λ

)

tµk
t∗µk

= tµk
t∗µk
,

which is nonzero because t∗µk
tµk

= ts(µk) is nonzero. Since Z
k is amenable, the result

now follows from Theorem 8.1. �
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